Chemical Reviews

Volume 76, Number 5

October 1976

The Synthesis of Phenanthrenes

A. J. FLOYD,* ^{1a} S. F. DYKE,* ^{1a} and S. E. WARD^{1b}

The School of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, Avon, England, and The Wellcome Research Laboratories, Langley Court, Beckenham BR3 3BS, Kent, England

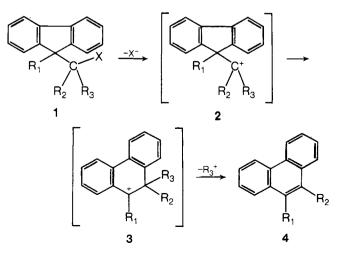
Received May 19, 1975 (Revised Manuscript Received July 17, 1975)

Contents

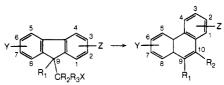
١.	Introduction	509
Н.	Carbocyclic Ring Expansion Reactions	509
	A. Wagner-Meerwein and Related Rearrangements of Fluorenyl Derivatives	509
	B. Ring Expansion of Fluorenones with Diazoalkanes	512
	C. Radical-Induced Rearrangements of Fluorenyl Derivatives	513
	D. Miscellaneous Rearrangements of Fluorene Derivatives	513
	E. Rearrangement of Spiro Compounds	513
111.	Intramolecular Cyclization Reactions	514
	A. Cyclization of Tetradecane Derivatives	514
	B. Cyclization of Benzenoid Compounds	514
	C. Cyclization of Naphthalenoid Compounds	516
	D. Cyclization of Stilbenoid Compounds	527
	E. Cyclization of Biphenyloid Compounds	542
V.	Intermolecular Cycloaddition Reactions	550
	A. From Naphthalenes	550
	B. From Styrenes	553
	C. Miscellaneous Methods	558
V.	References	559

I. Introduction

Since the discovery of phenanthrene in coal tar and the elucidation of its structure,² many synthetic schemes have been investigated for the preparation of it and its derivatives. Stimulation for these studies has been provided by the fact that many naturally occurring compounds of biological and therapeutic interest contain a phenanthrene or reduced phenanthrene nucleus (e.g., steroids, resin acids, morphine, and aporphine alkaloids). A considerable number of synthetic routes is now available; Clar³ has included a short review of the synthesis of phenanthrene in his treatise, while some of the earlier routes to the ring system are given by Fieser.⁴ In addition, some of the individual methods have been separately reviewed^{5,6} or have been included with other material in reviews.7-10 A recent Japanese paper¹¹ includes a survey of the preparation of monosubstituted phenanthrenes.


The main aim of this review is to survey all the important methods by which the fully aromatic phenanthrene ring system may be synthesized. Where a specific method has already been reviewed in a readily accessible journal, our intention is simply to update the review with references from the more recent literature. To this effect, we have covered the literature to December 1974. It is, of course, necessary to include the formation of many reduced phenanthrene systems, which can usually be readily dehydrogenated to phenanthrenes. Syntheses, which would require the breaking of carbon-carbon bonds during this aromatization step, are usually omitted, unless they provide the only examples of an interesting method, anticipated to be of more general application. In this way the size of the review was limited, mainly by omitting reference to the synthesis of steroids, and of di- and triterpenoids, which have been subject to earlier review. 12, 13

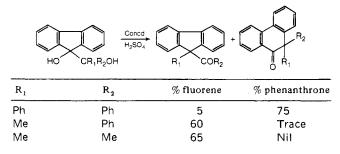
The reaction sequences used in the synthesis of phenanthrenes are often lengthy, so we have concentrated our attention on the stage at which the phenanthrene or reduced phenanthrene ring system is completed. This stage has been broadly classified into three types: carbocyclic ring expansion, intramolecular cyclization, and intermolecular cycloaddition. These main groups have been subdivided according to the ring system or the ring assembly utilized, and the reaction type (e.g., cycloalkylation, cycloacylation, etc.) of this stage.


II. Carbocyclic Ring Expansion Reactions

A. Wagner-Meerwein and Related **Rearrangements of Fluorenyl Derivatives**

Under suitable conditions, fluorenyl methane derivatives 1 give rise to carbonium ions 2, which lead to 3 by Wagner-

TABLE I. Phenanthrenes from Fluorene Derivatives



x	R ₁	R ₂	R3	Y	Z	Reaction conditions	% yield	Ref
он	н	н	н	н	н	P ₂ O ₅	90-100	14
ЭН	Н	Н	н	н	1-Me	P ₂ O ₅	100	19
ЭН	н	н	н	н	3-Me	P ₂ O ₅	88	20
ЭН	н	н	н	н	3-OMe		93	20
ЭН	н	н	н	н	2-F	PPA	64	21
DH	н	Н	н	Н	4-Br	P ₂ O _s	47	22
ЭН	н	н	н	н	2-NO2	PPA	45	17
ЭН	н	Н	Н	7-Me	2-Me		75	359
DH	н	н	н	7-livie 7-Br		P ₂ O ₅	10	
ЭН	H	Me			2-Br	P ₂ O ₅		16
			Н	H	н	P ₂ O ₅	20 <i>a</i>	25
ЭН	Me	н	Н	н	н	PPA	65	25, 3
						SOCI ₂ /AgOAc/AcOH	61	d
						Al ₂ O ₃ /350°	75	25
ЭН	Me	Me	н	н	Н	P ₂ O ₅	90	25
						Al ₂ O ₃ /350°	75	25
ЭН	Me	Me	Me	н	н	PPA	30-50	е
ЭН	Me	Ph	н	н	Н	P ₂ O ₅	100	f
ЭН	Et	н	н	н	н	PPA	66	26
ЭН	Et	Me	н	н	Н	Al ₂ O ₃ /350°	65	25
ЭН	Et	Et	Et	н	Н	PPA	30-50	e
ЭН	t-Bu	H	н	н	н	PPA	Low ^b	26
ЭН	CH ₂ CH==CH ₂	Ph	н	Н	Н	P_2O_s	82¢	
ЭН	PhCH ₂	H	н	н	H	PBr ₃ /100°	75	g h
ЭН	Ph	Ph	н	Н	Н	I ₂ /AcOH	100	i
ЭН								:
	9-Fluorenyl	н	н	Н	н	P ₂ O ₅	65	j
ЭН	2-Naphthylmethyl	Н	н	Н	Н	P ₂ O ₅	80	k
рн	9-PhenanthryImethyl	Н	Н	н	Н	P ₂ O ₅	75	k
DAc	H	Н	Н	Н	2-NO ₂	PPA	89	18
DCOCF,	CO ₂ Me	н	н	н	н	HCO₂H	82	1
DCOCF ₃	CO₂Me	CO ₂ Me	н	н	Н	HCO₂H	62	1
DTs	Me	н	н	н	Н	HCO ₂ H	99	26, 2
DTs	Me	Me	н	н	Н	HCO ₂ H	99	m
DTs	Me	Me	н	н	2-NO ₂	HCO ₂ H	74	17
DTs	Et	н	н	Н	н	нсо₁н	99	26,
۶TC	<i>i</i> -Pr	н	н	н	Н	нсо₁́н	99	26,
DTs	t-Bu	н	н	н	Н	HCO ₂ H	99	26,
DTs	PhCH ₂	Н	н	н	н	HCO ₂ H	99	26,
	Me	Ph	н	н	н	HCO ₂ H	100	f
3	Et	Н	H	н	н	KOH/MeOH/150°	60	, 24
	Et	Me	Н	Н	н	KOH/MeOH/150°	70	24
	ОН	CI	H	Н	Н	n-BuLi/piperidine	44	n
Br	Me	Н	н	н	Н	AgCIO ₄ /AcOH	77	1
						Quinoline	70	l
Br	Ph	Н	н	н	н	AgClO₄/AcOH	66	1
						Quinoline	74	l
sr	CONMe ₂	н	н	н	н	CF ₃ CO ₂ Ag/HCO ₂ H	53	1
Br	ОН	Me	н	н	Н	R MgX/C ₆ H ₆	62	27
lr.	Br	p-MeOC ₆ H ₄	Н	н	H	KOAc/AcOH	90	0
NH2	H	H	н	6, 7-	2,3-(OMe) ₂	HNO ₂		23
	••			(OMe)				

^{*q*}Plus 9-ethylidenefluorene. ^{*b*}Plus 9-methylenefluorene and phenanthrene. ^{*c*}Plus 9-phenyl-10-prop-1-enylphenanthrene. ^{*d*}P. M. G. Bavin, Can. J. Chem., **38**, 1099 (1960). ^{*e*}F. A. L. Anet and P. M. G. Bavin, *ibid.*, **36**, 763 (1958). ^{*f*}P. M. G. Bavin, *ibid.*, **37**, 2023 (1959). ^{*s*}A. H. A. Tinnemans and W. H. Laarhoven, J. Am. Chem. Soc., **96**, 4617 (1974). ^{*h*}G. Wittig, P. Davis, and G. Koenig, Chem. Ber., **84**, 627 (1951). ^{*i*}W. E. Bachmann, J. Am. Chem. Soc., **55**, 3857 (1933). ^{*j*}S. Wawzonek and E. J. Dufek, *ibid.*, **78**, 3530 (1956). ^{*k*}M. Matzner, S. Glazer-Tarasiejska, and R. H. Martin, Bull. Soc. Chim. Belg., **69**, 551 (1960). ^{*i*}P. M. G. Bavin, Can. J. Chem., **42**, 1409 (1964). ^{*m*}F. A. L. Anet and P. M. G. Bavin, *ibid.*, **43**, 2465 (1965). ^{*n*}G. Koebrich and J. Grosser, Tetrahedron Lett., 4117 (1972). ^{*o*}Z. Rappoport and A. Gal, J. Org. Chem., **37**, 1174 (1972).

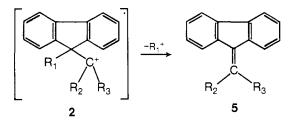
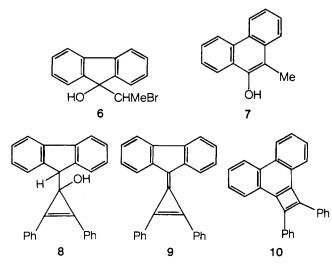
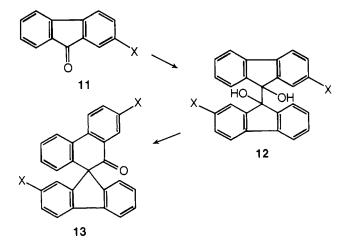

Meerwein shift; at this stage, elimination gives 9- and 9,10substituted phenanthrenes 4 in good yield.^{8,14} Many of the substituted fluorenes 1 required for this rearrangement can readily be prepared (e.g., from fluorenyl-9-carbocyclic acids by alkylation and reduction), so the method is of wide potential application to phenanthrene synthesis. The conversion of a fluorene to a phenanthrene was first reported in 1904,¹⁵ but not until the work of Brown and Bluestein^{14,16} were the synthetic possibilities examined. A variety of leaving groups (X) have been utilized (see Table I), although the majority of reactions have involved fluorenylcarbinols **1** (X = OH), using dehydrating agents such as phosphorus pentoxide or polyphosphoric acid (PPA). Formolysis

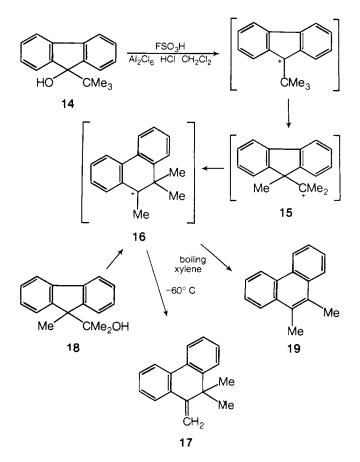
TABLE II. Rearrangement²⁹ of Some 9-Fluorenois



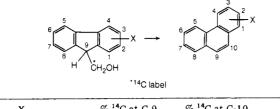
of either tosyl esters 1 (X = $OSO_2C_6H_4$ -*p*-Me) or trifluoroacetate esters 1 (X = $OCOCF_3$), diazotization of 9-aminomethylfluorenes 1 (X = NH_2), and treatment of 9-halomethylfluorenes 1 (X = CI or Br), with various acidic or basic reagents have also been successful. Further variations can be introduced by using fluorenes substituted in one or both of the aromatic rings.⁸ Thus 2-nitro-,^{17,18} 1-methyl-,¹⁹ 3-methyl-,²⁰ 3-methoxy-,²⁰ 2-fluoro-,²¹ 4-bromo-,²² 2,7-dibromo-,¹⁶ 9,10-dimethyl-2-nitro-,¹⁷ and 2,3,6,7-tetramethoxyphenanthrene²³ have been prepared.


The nature of the groups R_1 , R_2 , and R_3 in 1 influence the outcome of the rearrangement. If $R_1 = H$, then a proton may be lost from 2 before rearrangement, resulting in the formation of

a derivative of 9-methylenefluorene **5** in place of,²⁴ or as well as,²⁵ phenanthrenes. Indeed, the stable *tert*-butyl carbonium ion can be expelled²⁶ from **2** (R₁ = *t*-Bu, R₂ = R₃ = H) yielding **5** (R₂ = R₃ = H). Compounds of type **5** have themselves been converted to phenanthrenes;²⁷ thus **5** (R₂ = Me, R₃ = H) treated with *N*-bromosuccinimide gives **6**, which yields 10-methyl-9-phenanthrol (**7**) on reaction with a Grignard reagent. An exceptional case was observed²⁸ with **8**, which on dehydration with phosphoryl chloride in pyridine gave no **9**, presumably due to steric effects. Instead, the phenanthrene derivative **10** was obtained



in 72% yield. When $R_1 = OH$, then the course of the pinacolpinacolone rearrangement of 1 depends upon the identity of R_2 and R_3 (see Table II),²⁹ since an alternative carbonium ion may now be generated at the 9 position of the fluorene ring. The formation of 13 (X = H) by the zinc dust fusion³⁰ of fluorenone 11 (X = H) similarly involves a pinacol-pinacolone rearrangement of the intermediate 12 (X = H). The reduction of 11 (X =


Br) using zinc-amalgam and hydrochloric acid leads to the isolation of **12** (X = Br), which can be converted³¹ in low yield to **13** (X = Br) by heating with sulfuric acid in acetic acid solution.

The intermediate carbonium 2 has been generated by a number of alternative routes. Thus 2 is presumably intermediate in the formation of 9-methyl-, 9-ethyl-, and 9-ethyl-10-methyl-phenanthrene, by the treatment of 9-vinyl-, 9-allyl-, and 9-allyl-9-methylfluorene, respectively, with phosphorus pentoxide.²⁴ Dehydration of 9-*tert*-butylfluorenol (14) using strong acids at $-60 \ ^{\circ}$ C proceeds³² with rearrangement, via carbonium ions 15 and 16 giving 17. Treatment of 18 with formic acid³³ at 40 \ ^{\circ}C

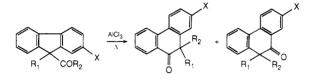
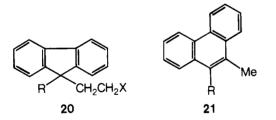
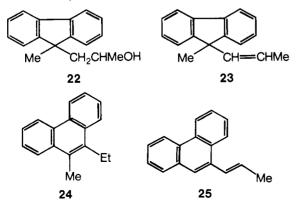
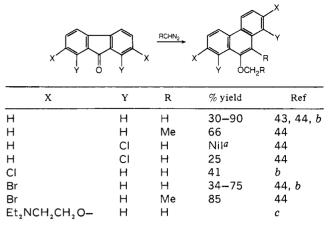

likewise gives a 10% yield of 17; however, under more drastic conditions (PPA in boiling xylene) a methyl group is eliminated to yield 19. Good yields of 21 may be obtained by either the dehydration²⁵ of 20 (X = OH) or by the elimination²⁴ of hydrogen chloride from 20 (X = CI). However, 24 results in poor yield,

TABLE III. Migratory Aptitudes in 9-Hydroxymethylfluorenes



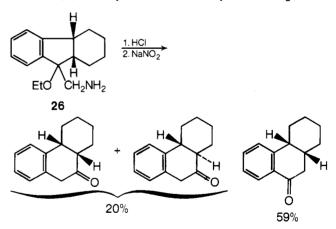
x	% '"C at C-9	% ¹⁴ C at C-10	Ret
1-Methyl	50	50	19
3-Methyl	27	73	20
3-Methoxy	2	98	20


TABLE IV. Rearrangements of 9-Acylfluorenes


R ₁	R ₂	x	Combined % yield of phenanthrones	Ref
Me	Me	Н	36	37
Me	Me	NO ₂	Nil	37
Me	Et	н	57	37
Me	Et	Me	60	37
Me	Et	NO ₂	Nit	37
Me	Ph	н	Low	38
Et	Et	н	63	37
Et	Et	Me	66	37
Et	Ph	Н	45	38
<i>i-</i> Pr	Ph	н	Nil	38
Ph	Me	н	85	38
Ph	Et	н	10	38
Ph	<i>i</i> -Pr	н	Nil	38
Ph	Ph	н	85	38

when either **22** or the derived **23** is treated³³ with phosphorus tribromide or hydrogen bromide, respectively. Attempts to obtain chlorofluorocarbene insertion reactions with fluorene, by treatment with dichlorofluoromethane and tetraethylammonium bromide in the presence of ethylene oxide,³⁴ resulted mainly in

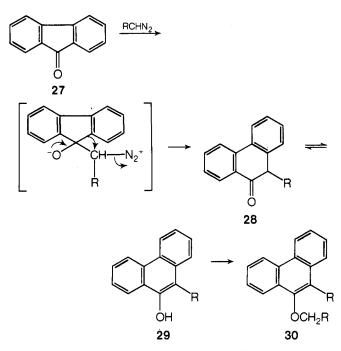
TABLE V. Ring Expansion of Fluorenones

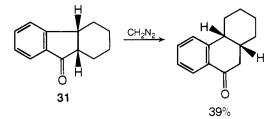

 4 50% 1,8-dichlorospiro[fluorene-9,2'-oxirane] isolated. b L. C. Washburn and D. E. Pearson, J. Med. Chem., 17, 676 (1974). c D. R. Meyer, A. D. Sill, and P. L. Tiernan, Germany Offen. 2,362,577; Chem. Abstr., 82, 4064 (1975).

reaction with the ethylene oxide. The major product, 9-ethylidenefluorene (5, $R_2 = Me$; $R_3 = H$) was accompanied by 5% of the rearranged product 25.

The mechanism of the rearrangement and the migratory aptitude of the benzo and substituted benzo groups of fluorenes have been investigated^{19,20,35,36} (see Table III). The electronic effects of the 3-methyl and 3-methoxy groups, especially the latter, predictably favor the migration of the substituted benzo group. The 1-methyl group has no effect, possibly because of the steric and electronic effects of the methyl cancelling each other in this position.¹⁹

9-Acylfluorenes rearrange^{37,38} to a mixture of the corresponding phenanthrenes, when heated with aluminum trichloride (see Table IV).


The 1,2,3,4-tetrahydrofluorene 26 may also undergo rear-


rangement on diazotization, with the formation of reduced phenanthrone products.³⁹ Interestingly alkyl migration predominates, a somewhat unexpected result, which was explained on steric grounds.³⁹

B. Ring Expansion of Fluorenones with Diazoalkanes

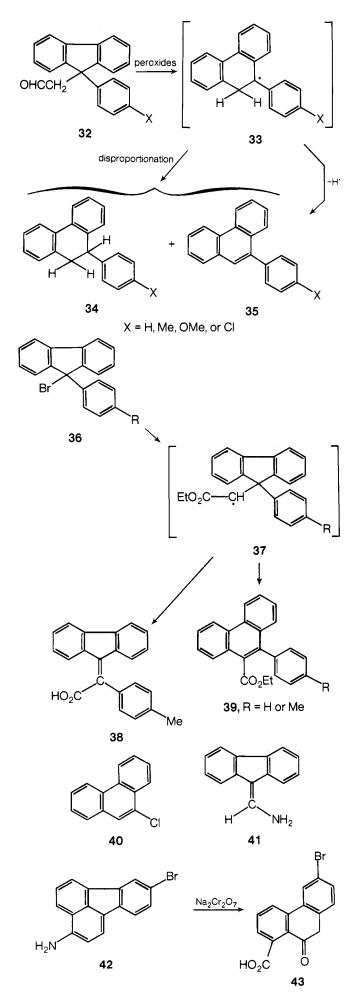
The well-known^{40–42} ring expansion of cyclic ketones using diazoalkanes may be applied^{43,44} to fluorenone **27**. The expected product **28** can tautomerize to **29**, which is then alkylated by an excess of diazoalkane to yield **30**. The reaction has also been applied successfully with a number of other examples (see Table V), while 2,3,4,7-tetramethoxyfluorenone yields either 2,3,4,7,9- or 2,3,4,7,10-pentamethoxyphenanthrene on treatment with diazomethane.⁴⁵ It is important⁴⁴ to use pure distilled diazoalkane

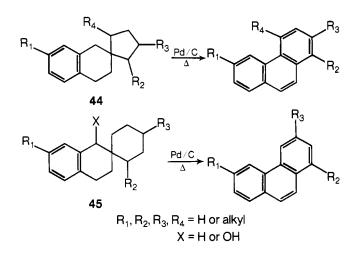
in ether solution for good yields. The ring expansion method has also been $used^{43}$ with the hexahydrofluorenone **31**. Once again, the product resulted from alkyl migration with retention of configuration (see **26** above).

Since fluorenones are quite readily accessible compounds, this particular ring expansion merits more attention.

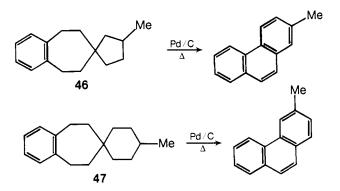
C. Radical-Induced Rearrangements of Fluorenyl Derivatives

The rearrangement of 9-fluorenylacetaldehydes **32** to yield phenanthrenes has been reported.^{46,47} The reactions are similar to the ionic rearrangements discussed in section II.A, but involve radical intermediates. Radical **33** undergoes disproportionation and competitive hydrogen radical abstraction leading to a mixture of **34** and **35**, with the latter predominating.

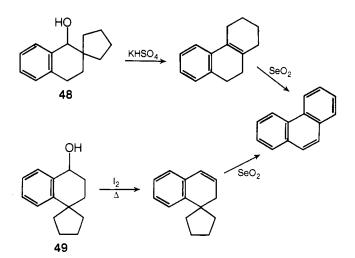

The formation of phenanthrene derivatives **39**, when 9bromo-9-arylfluorenes **36** are treated with ethyl diazoacetate and copper sulfate in cyclohexane,⁴⁸ probably involves radical intermediates. The formation of **38** (in 22% yield) arises⁴⁸ presumably by migration of the 9-aryl group in the intermediate radical **37** (R = Me).

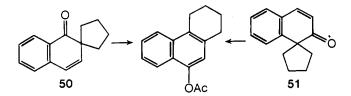

D. Miscellaneous Rearrangements of Fluorene Derivatives

9-Chlorophenanthrene (**40**) is reported⁴⁹ as a minor product of the reaction of nitrosyl chloride with **41**. 3-Bromo-9-phenanthrone-8-carboxylic acid (**43**), formed⁵⁰ by the oxidation of **42** with sodium dichromate, presumably involves rearrangement of a fluorene intermediate, formed by an oxidative opening of the amino-substituted ring.


E. Rearrangement of Spiro Compounds

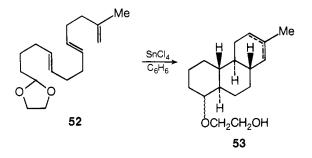
Both rearrangement and ring enlargement of spiro compounds yielding phenanthrenes are known. Thus various spiro-tetralins




44 and **45** give rise to phenanthrenes on catalytic dehydrogenation^{51,52} at 320–350 °C. Similarly, the benzospiro[6.4]undecane **46** and benzospiro[6.5]dodecane **47** give small yields of 2-methyl- and 3-methylphenanthrene, respectively, on catalytic dehydrogenation^{53,54} at 380–400 °C. The spiro-tetralins

48 and **49** have been converted⁵⁵ to phenanthrene by dehydration followed by dehydrogenation with selenium dioxide. The

eneones **50** and **51** both yield 1,2,3,4-tetrahydro-9-phenanthryl acetate in good yield, when treated with sulfuric acid in acetic anhydride.⁵⁶

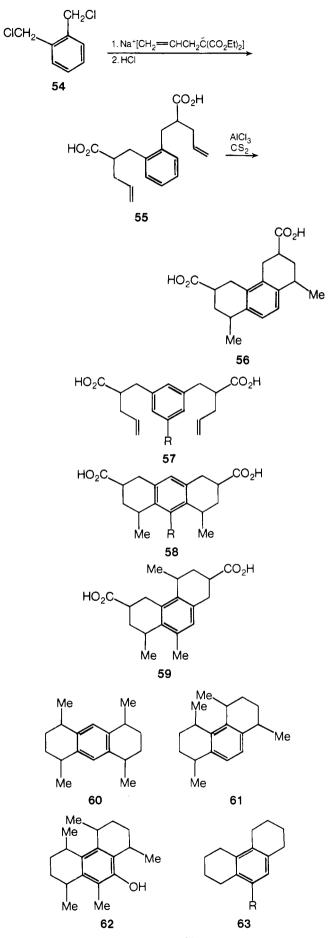

Although many of these spiro compounds are readily prepared, the use of these methods as a general procedure for phenanthrene synthesis is limited by uncertainty regarding the orientation of substituents in the products.

III. Intramolecular Cyclization Reactions

The majority of phenanthrene syntheses involve intramolecular cyclizations of variously substituted aromatic and hydroaromatic compounds. These reactions have been classified into four main groups, according to the nature of the parent aromatic system (or its reduced equivalent): benzenoid, naphthalenoid, stilbenoid, and biphenyloid. Additionally a small section on the cyclization of tetradecane derivatives is included. These main groups are then further subdivided according to the reaction type of the cyclization stage (e.g., cycloalkylation, cycloacylation, condensation, etc.).

A. Cyclization of Tetradecane Derivatives

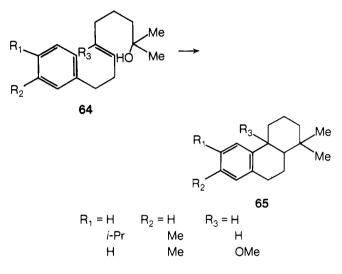
The triple cyclization of tetradecane derivatives to yield perhydrophenanthrenes has in general been aimed at the production of diterpenoids, with angular alkyl and *gem*-dialkyl substituents. However, *trans,trans*-13-methyl-5,9,13-tetradecatrienal, as its cyclic acetal **52**, has been cyclized⁵⁷ to a do-decahydrophenanthrene **53** in 89% yield. The position of the double bond was uncertain. It seems unlikely that this method will find wide application to the synthesis of phenanthrenes.


B. Cyclization of Benzenoid Compounds

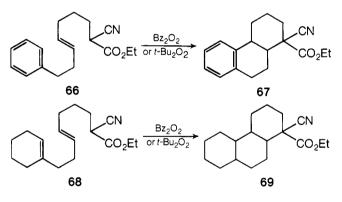
The reactions in this group are of little general importance, although they have been used to synthesize specific alkyl- and polyalkylphenanthrenes. All of these methods necessarily involve a double cyclization. When the intermediates formed by a single cyclization have been isolated, then their further cyclization is discussed under the group (naphthalenoid, stilbenoid, or biphenyloid) appropriate to that intermediate. Similar procedures separated in this manner are cross-referenced.

1. Intramolecular Cycloalkylation

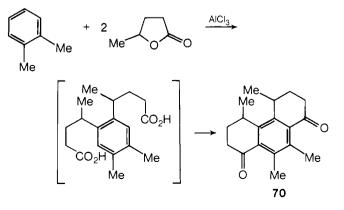
The ortho-disubstituted benzene **55**, readily prepared from **54**, undergoes⁵⁸ double cyclization on treatment with aluminum trichloride, yielding **56**. A similar procedure^{58b} using the metadisubstituted benzene **57** (R = H) gave only the octahydroanthracene **58** (R = H), although **57** (R = Me) gave a mixture of **58** (R = Me) and **59**. The octahydrophenanthrenes **56** and **59** were converted by standard procedures⁵⁸ into 1,3,6,8-tetramethyland 1,3,5,7,10-pentamethylphenanthrene, respectively. Since the ortho-disubstituted starting materials are readily available and the cyclization occurs in good yield (ca. 70%), this is a promising, though little exploited, route to phenanthrene derivatives.


The direct Friedel–Crafts alkylation of benzene derivatives with excess reagent may lead to octahydrophenanthrenes. Thus benzene alkylated⁵⁹ with excess of 2,5-dichlorohexane in the presence of aluminum trichloride gives a 4:1 mixture of **60** and **61**, while *o*-cresol yields⁶⁰ **62** along with several isomeric tetralins. Similarly **63** ($\mathbf{R} = \mathbf{Me}$) is formed in 39% yield among other

products when toluene is alkylated⁶¹ using 1,4-dichlorobutane. Among the products from the alkylation⁶² of benzene and toluene with tetrahydrofuran and aluminum trichloride were **63** (R = H)

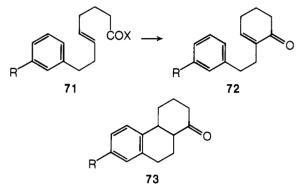

and **63** (R = Me), respectively. Similar procedures have been applied to naphthalenoid precursors (see section III.C.1). The value of this method is limited by the need to separate product mixtures.

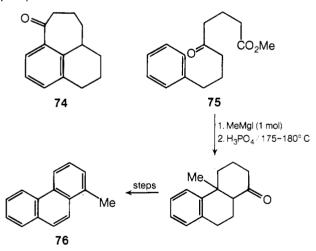
Suitable monosubstituted benzenes may undergo double cyclization to give octahydrophenanthrenes. For example, the alcohols **64** have been cyclized⁶³ in about 25% yield, using either PPA or cold concentrated sulfuric acid. The starting materials are readily available.^{63,64} Numerous similar cyclizations


have been investigated, but the products, as in the case of **65**, have always included angular or *gem*-dialkyl substituents.

Radical-induced cycloalkylations have been reported; thus **66** and **68** are converted into phenanthrene derivatives **67** and **69**, respectively, on treatment^{65–67} with peroxides. The products **67** and **69** yield the corresponding 1-carboxy derivatives by hydrolysis and decarboxylation.

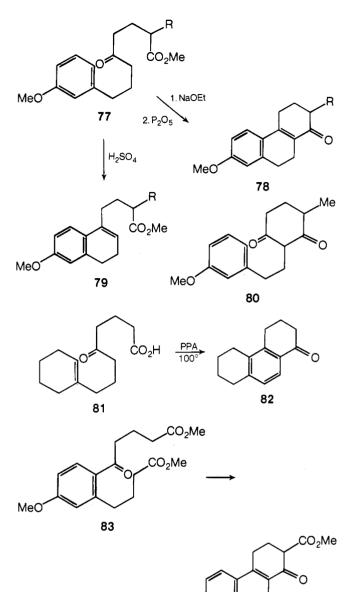
2. Intramolecular Cycloacylation


The Friedel–Crafts cycloacylation of suitable benzene derivatives may also result in the formation of hydrophenanthrenes. Thus the treatment of ρ -xylene with γ -valerolactone and alu-


minum trichloride results⁶⁸ in dialkylation followed by a double cycloacylation, giving a 15% yield of **70**. 4,5,9,10-Tetramethylphenanthrene may be prepared⁶⁸ from **70**, although in poor yield due to steric overcrowding.

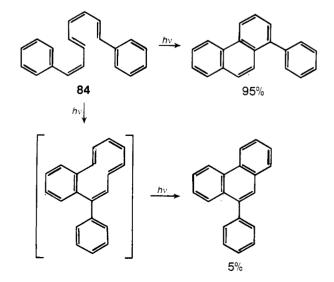
3. Intramolecular Cycloalkylation and Cycloacylation

Frequently, in the double cyclization of benzene derivatives, one cyclization may be regarded as an acylation, while the other is an alkylation. The cyclization^{69,70} of suitably constituted alkenoic acids or their derived acid chlorides, e.g., **71** (X = OH or Cl), provides such an example. However, since the intermediates **72** have frequently been isolated, this process is discussed as


a cyclization of stilbenoid systems (see section III.D). Aldehyde 71 (R = X = H) has been cyclized⁶⁵ by a radical-induced process using peroxides; the product 73 is believed to have a trans ring junction. Interestingly cyclization of acid 71 (R = H, X = OH) using PPA⁶⁹ gave only 74. However, in the conversion of methyl 8-phenyl-5-oxo-octanoate (75) to 1-methylphenanthrene (76), the desired cyclization was effected⁷¹ in low yield (10%) using phosphoric acid.

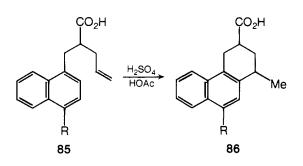
8-Aryl-5-oxooctanoates (77) may undergo direct double cyclization to phenanthrene derivatives 78. Treatment⁷² of 77 (R = H or R = Me) with cold concentrated sulfuric acid leads to the isolation of the corresponding intermediate dihydronaphthalene 79 (R = H or R = Me), the cyclization of which is discussed in section III.C.2. However, 77 (R = Me) was converted^{72a} to 78, by treatment with sodium ethoxide, followed by phosphorus pentoxide, without isolation of the intermediate 80. The cyclization of compounds such as 80 is an example of the Robinson and Schlittler method⁷³ discussed in section III.D.2. The cyclization of a related hydrobenzenoid system has been observed; thus 81 yields⁷⁴ 82 on treatment with PPA. The cyclization^{72b} of 83, although involving condensation reactions is included here for convenience.

4. Photocyclization

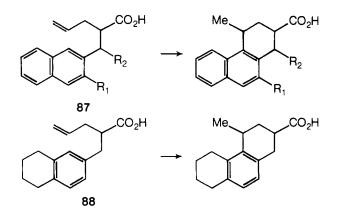

Few examples of this reaction type are known. However, ul-

traviolet irradiation⁷⁵ converts **84** into 1-phenylphenanthrene, together with a small amount of 9-phenylphenanthrene.

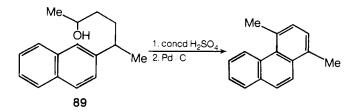
MeC


C. Cyclization of Naphthalenoid Compounds

Suitable naphthylaikenes, -alkanols, -alkanals, -alkanones,


-alkanoic acids, and -alkenoic acids have all been cyclized to tetrahydrophenanthrenes, which may be dehydrogenated to phenanthrenes. Naphthalene derivatives are in fact among the most important intermediates in the synthesis of phenanthrenes.

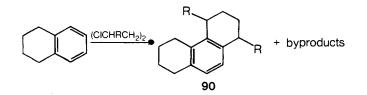
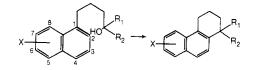
1. Intramolecular Cycloalkylation

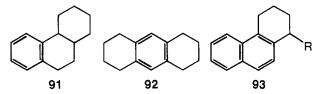

Both 1- and 2-naphthylalkenes have been cyclized using acidic reagents. Thus, 85 (R = H or Me) on treatment^{76,77} with sulfuric

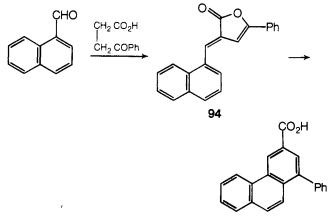
acid gave **86**, and the 2-naphthyl derivatives **87** and **88** have been similarly cyclized.^{58b,78} Since the starting materials **85**, **87**, and **88** are readily prepared,^{58b,76–78} this method constitutes a useful route to various alkyl- and carboxy-substituted phenanthrenes.

A number of 1- and 2-naphthylalkanols have likewise been cyclized by acid treatment. The majority of these have been concerned with terpene synthesis (see Table VI). A simple example involves the 2-naphthylalkanol **89**, which is cyclized⁷⁹ using sulfuric acid. Once again this presents a potentially useful method for the synthesis of alkylphenanthrenes.

The Friedel–Crafts cycloalkylation of tetralin and naphthalene derivatives may lead to phenanthrenes. Thus tetralin treated with

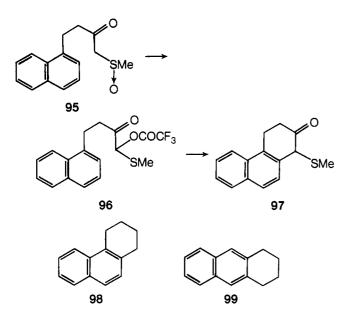




TABLE VI. Cyclization of 1-Naphthylalkanols


		<u></u>			
R ₁	R ₂	x	Reaction conditions	% yield	Ref
Me	Me	Н	85% H₂SO₄		a
Me	Et	Н	85% H,SO		а
Et	Et	н	85% H,SO		а
-(CF	$(1_2)_5 -$	Н	85% H ₂ SO		а
Me	Me	6-Me	PPA	64	b
Me	Me	6-Me, 7-OMe	PPA		b
Me	Me	6- <i>i</i> -Pr, 7-OMe	PPA	60	с
Me	Me	5,7-(OMe) ₂	H₂SO₄	34	d

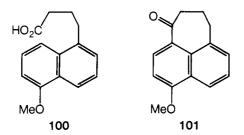
^aH. Adkins and D. C. England, J. Am. Chem. Soc., **71**, 2958 (1949). ^bD. Nasipuri and D. N. Roy, J. Indian Chem. Soc., **40**, 327 (1963). ^cD. Nasipuri and A. K. Mitra, J. Chem. Soc., Perkin Trans. J, 285 (1973). ^dM. Tateishi, T. Kusumi, and H. Kakisawa, Tetrahedron, **27**, 237 (1971).

1,4-dichlorobutane⁸⁰ or 2,5-dichlorohexane⁵⁹ in the presence of aluminum trichloride gives the octahydrophenanthrenes **90** (R = H and R = Me) in 20 and 38% yield, respectively, among other products (see also section III.B.1). The reaction of 1,4dichlorobutane with tetralin at higher temperature (60–70 °C) is reported⁸¹ to yield octahydrophenanthrene **91** in addition to **90** (R = H) and **92**. In a related process, the sodio derivative of

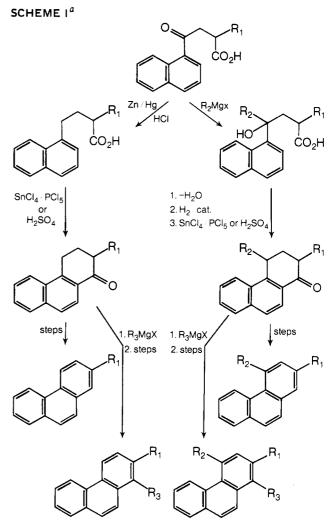


naphthalene reacts⁸² with 1,4-dichlorobutane or 1,4-dichloropentane to give **93**, R = H or R = Me, respectively, along with other products. The synthetic utility of these methods is limited

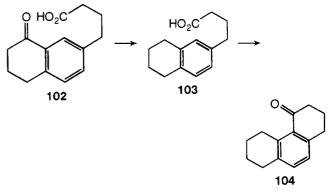
by the production of by-products. The formation⁸³ of 1-phenylphenanthrene-3-carboxylic acid from **94** under Friedel–Crafts conditions provides an interesting phenanthrene synthesis; however, the overall yield from 1-naphthaldehyde was only 7%. More promising is the formation of **97**, when **95** is treated⁸⁴ with trifluoroacetic anhydride, this reaction is believed to involve cycloalkylation in the intermediate **96**.


Cyclization of the 1- and 2-naphthylbutyl radicals has been observed.^{85,86} The 4-(1-naphthyl)butyl radical, prepared⁸⁵ from bis-5-(1-naphthyl)valeroyl peroxide, 5-(1-naphthyl)valeric acid/lead tetraacetate, or 5-(1-naphthyl)butane/tributyltin, yields **98**. The isomeric 4-(2-naphthyl)butyl radical, prepared⁸⁶ from 5-(2-naphthyl)valeric acid/lead tetraacetate yields a little **99** along with **98** (44%).

1- or 2-*n*-butyl- and higher alkylnaphthalenes may be converted⁸⁷⁻⁸⁹ to phenanthrenes by high-temperature dehydrogenation over platinum/carbon, chromic oxide/alumina, iridium/alumina, or palladium/gumbrine catalysts. The 2-alkylnaphthalenes, which additionally give rise to anthracenes, give the best yields^{87,88} of phenanthrenes at higher temperature (ca. 450 °C) over chromic oxide/alumina. 4-Alkyl substituents may be lost from the resultant phenanthrene.⁸⁸ This method is of limited value as a laboratory procedure, although it could be useful on an industrial scale.


2. Intramolecular Cycloacylation

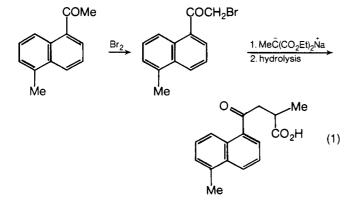
Among the most important routes to phenanthrenes, from naphthalenoid intermediates, is the acid-catalyzed cyclization¹⁰ of the readily available 1- and 2-naphthylbutyric acids. The yields of 1- and 4-oxo-1,2,3,4-tetrahydrophenanthrenes are usually high, although products other than phenanthrenes may be formed on occasion. Thus **100**, in which the 8 position of the naphthalene ring is activated, yields⁹⁰ preferentially **101**. 4-(2-Naph-


thyl)butyric acids may lead to the formation of small amounts of anthracene by-products,⁹¹ or in even larger proportion if the directive influence of the 1-naphthyl position is lost, e.g., **103**.⁹² The conversion into fully aromatic phenanthrenes occurs in variable yield; however, many routes are available (see Scheme I), which permit the introduction of additional alkyl groups. Further variation may be achieved, for example, by formation⁹³ of the oxime from the 4-oxo group, leading in turn to 4-amino- and 4-halophenanthrenes. This results in a very flexible phenanthrene synthesis, which has been widely used.

The most commonly used method for the preparation of the 3-(naphthoyl)propionic and 4-(naphthyl)butyric acids was introduced by Haworth⁹⁴ and involves¹⁰ the Friedel–Crafts acylation of naphthalene or substituted naphthalenes by succinic anhydride or its mono- or symmetrical dialkyl derivatives. The half acid chloride of succinic acid, or its esters, have been used^{95,96} for succinoylation. Succinoylation may produce mixtures of isomers; thus naphthalene yields^{94,97} both 1- and 2-

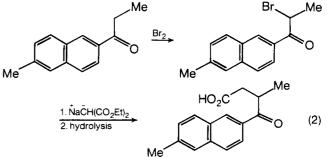
^a 3-(2-Naphthoyl)propionic acids may be treated similarly.

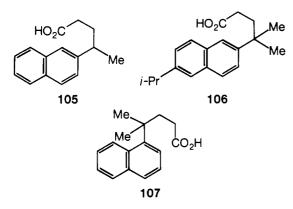
naphthoylpropionic acids, which were separated by fractional crystallization. Substituted naphthalenes frequently lead to only one naphthoylpropionic acid derivative, owing to the directive influence of the substituents. The scope of the Haworth method is illustrated by the examples in Table VII. The keto acid **102**, obtained by the double succinoylation of benzene followed by reduction and cyclization, failed⁹² to cyclize further, although **103** could be cyclized, yielding **104** and the corresponding octahydroanthracene.


Numerous other methods have been used for the preparation of 4-(naphthyl)butyric acids, thus allowing the side chain to be attached at positions unavailable by the Haworth synthesis. The reaction of naphthylmagnesium bromides, for example, with ethylene oxide provides naphthylethanols converted to naphthylbutyric acids via their halides and diethyl malonate. In this way have been obtained 8- and 9-methoxy-1,2,3,4-tetra-

	RCH-CO			
Naphthalene substituents	O CH ₂ -CO R =	Position of succinoylation	Phenanthrenes prepared	Ref
Unsubstd	Н	1 and 2	1-Me; 4-Me; 1-Ph; 1-CH(OH)CH ₂ NR ₂ ; 4-CH(OH)CH ₂ NR ₂ ; 1,4-(Me) ₂	94, d, e
Unsubstd	Me	1 and 2	2-Me; 3-Me; 1,2-(Me) ₂ ; 1,3-(Me) ₂ ; 2,4- (Me) ₂ ; 3,4-(Me) ₂ ; 1,3,4-(Me) ₃	94, 104, 195
1-Me	н	4	9-Me; 1,9-(Me),	104
1-Me	CH2CO2H	4	2,9-(Me)	f
2-Me	н́	6	1,7-(Me), 1-Et-7-Me	g, h
2-Me	CH,	6	1,3,7-(Me)	105
2-Me	CH ₂ CO ₂ H	6	3,7-(Me),	f
2- <i>i</i> -Pr	H	6	1-Me-7- <i>i</i> -Pr; 1-Et-7- <i>i</i> -Pr; 1,4-(Me) ₂ -7- <i>i</i> -Pr	ĥ
2- <i>i</i> -Pr	CH3	6	1-Me-7- <i>i</i> -Pr	i
1-CH,CH,CO,H	н	4	b	j
2-CH ₂ CH ₂ CO ₂ H	н	6	b	k
2-CH,CH,CH,CO,H	Н	6	b	l
1-OH	Н	4	С	m
2-OMe	Н	1, 6 and 8 ^{<i>a</i>}	2-OMe; 2-Me-6-OMe	n, o
1,2-(Me) ₂	Н	4	9.10-(Me),	p
1,6-(Me),	Н	4	3,10-(Me), 1,6,9-(Me),	\overline{q}
1,7-(Me),	н	4	2,10-(Me),; 1,7,9-(Me),	\overline{q}
1-Me-7- <i>i-</i> Pr	Н	4	2- <i>i</i> -Pr-10-Me; 2,9-(Me) ₂ -7- <i>i</i> -Pr	r
1,8-(Me) ₂	Me	4	1,6,10-(Me) ₃ ; 1,7,10-(Me) ₃	\$
2,3-(Me) ₂	н	7	1,6,7-(Me) ₃	105
1,7-(OMe) ₂	Н	4	b	t
2,3(OMe) ₂	Н	7	6,7-(OMe),-1,2,3,4-(H),	и
2,7-(OMe) ₂	Н	3	7,10-(OMe) ₂ -1,2,3,4-(H) ₄	υ
1-CO ₂ H,8-NH ₂ lactam	Н	5	8-CO ₂ H-9-NO ₂ -1,2,3,4-(H) ₄	w
2-F,8-Ph	Н	5	1,9-(Ph) ₂ -7-F	x
2,3,6-(Me) ₃	Н	7 and 8	2,3,9-(Me) ₃ ; 2,3,5,9-(Me) ₄ ; 2,3,8,9- (Me) ₄	У

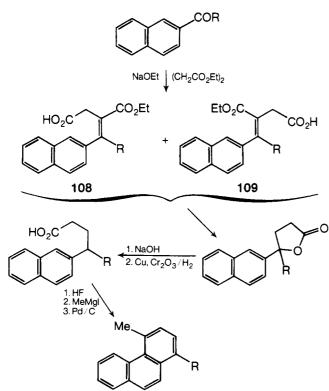
TABLE VII. Phenanthrenes from the Haworth Synthesis

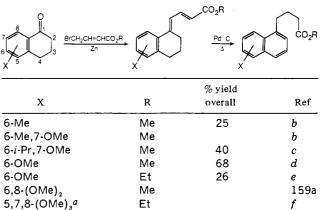

^a The author in footnote o suggests that this is due to impurity. ^bPhenanthrenes not prepared, but cyclized to the corresponding phenanthrones. ^c Converted into 4-methyl-4 -oxocyclohexeno[5',6':5,6] benzo[h] coumarin via a Von Pechmann reaction and cyclization. ^dA. L. J. Beckwith and M. J. Thompson, J. Chem. Soc., 73 (1961). ^eL. O. Krbechek, R. R. Riter, R. G. Wagner, and C. W. Huffman, J. Med. Chem., 13, 234 (1970). ^JK. R. Tatta and J. C. Bardhan, J. Chem. Soc., C, 893 (1968). ^gR. D. Haworth, B. M. Letsky, and C. R. Mavin, J. Chem. Astr., 65, 2188 (1966). ^JA. U. Bahman, B. M. Vuano, and N. M. Rodriguez, Aust. J. Chem., 25, 1521 (1972). ^kA. U. Rahman and N. M. Rodriguez, Chem. Ber., 104, 2651 (1971). ^IA. U. Rahman and A. A. Khan, *ibid.*, 95, 1786 (1962). ^mM. G. Parekh and K. N. Trivedi, J. Indian Chem. Soc., 46, 815 (1969). ⁿW. E. Bathmann and W. J. Horton, J. Am. Chem. Soc., 69, 58 (1947). ^oM. Ghosal, J. Org. Chem., 25, 1856 (1960). ^PN. P. Buu-Hoi and G. Saint-Ruf, C. R. Acad. Sci., Ser. C, 254, 2366 (1962). ^qN. P. Buu-Hoi and G. Saint-Ruf, Bull. Soc. Chim. Fr., 2307 (1963). ^rH. Kobayashi, Bull. Chem. Soc. Jpn., 35, 1970 (1962); Chem. Abstr., 58, 8995 (1963). ^gJ. A. Corran and W. B. Whalley, J. Chem. Soc., 4719 (1958). ^IN. P. Buu-Hoi and G. Saint-Ruf, Bull. Soc. Chim. Fr., 624 (1966). ^MN. P. Buu-Hoi and G. Saint-Ruf, C. R. Acad. Sci., Ser. C, 260, 593 (1965). ^VG. Saint-Ruf and N. P. Buu-Hoi, Bull. Soc. Chim. Fr., 2225 (1970). ^wS. M. Kupchan and M. Mokotoff, J. Med. Chem., 10, 977 (1967). ^xM. Sy and G. A. Thiault, Bull. Soc. Chim. Fr., 1308 (1965). ^JW. Carruthers and J. D. Gray, J. Chem. Soc., 2422 (1957).


hydro-1-phenanthrone,⁹⁸ 1-, 2-, and 4-*n*-decylphenanthrene,⁹⁹ and 7-methoxyphenanthrene-1,2-dicarboxylic acid anhydride.¹⁰⁰ 1-Naphthylmagnesium bromide may be reacted with succinic anhydride¹⁰¹ or 2,3-dimethylsuccinic anhydride,¹⁰² and 5-methyl-1-naphthylmagnesium bromide with *R*-(-)-CICOCH₂C-MeEtCO₂Me,¹⁰³ to yield 3-(1-naphthoyl)propionic acids and by reduction 4-(1-naphthyl)butyric acids. Another variation involves

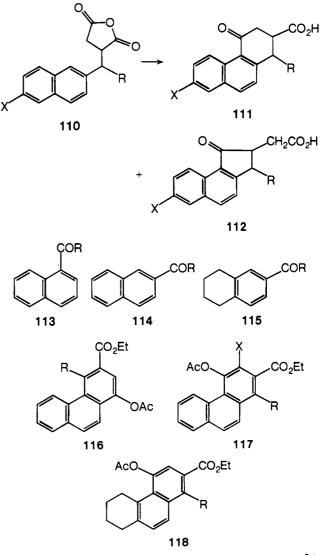
bromination of 1-¹⁰⁴ or 2-acylnaphthalenes¹⁰⁵ followed by reaction with diethyl malonate to yield 1- or 2-naphthoylpropionic acids (see eq 1 and 2).

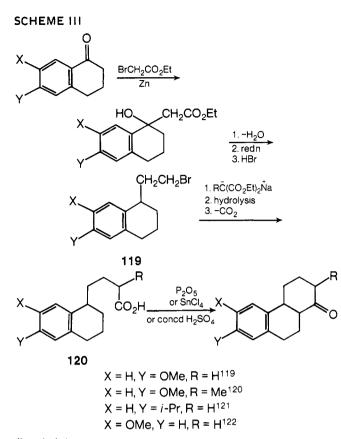
Naphthalene may be alkylated under Friedel–Crafts conditions using 4-pentenoic acid⁷⁹ giving rise directly to 4-(2-naphthyl)-4-methylbutyric acid (**105**); similarly, **106** may be obtained¹⁰⁶ from 2-isopropylnaphthalene and 4-methyl-3-pentenoic acid, and **107** from naphthalene and either 4-methyl-3-pentenoic or



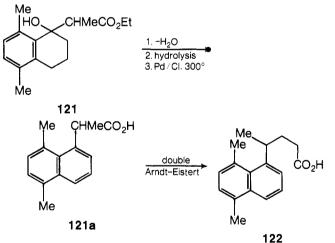

4-methyl-2-pentenoic acid.¹⁰⁷ The Stobbe condensation¹⁰⁸ between 2-acetylnaphthalene and diethyl succinate forms the basis of another route to 4-(2-naphthyl)butyric acids and thus phenanthrenes. The method developed by Johnson and his coworkers¹⁰⁹⁻¹¹¹ is summarized in Scheme II. The overall yield was 54% (for R = Me), so although the reaction sequence is lengthy, it provides an efficient phenanthrene synthesis. The direct cyclization of the mixed products of condensation, 108 (R = Me) and 109 (R = Me) leads¹⁰⁹ to lower yields of phenanthrenes, since only 108 (R = Me) is suitable for cyclization. Reduction of the double bond in 108 and 109 prior to cyclization via the derived acid anhydride 110 was successful¹¹² with R = Ph, X = H. Similarly 110 (R = H, X = OMe) gave¹¹³ 111 in 95 % yield, although when 110 (R = Et, X = OMe) was cyclized¹¹⁴ 112 predominated. The direct cyclization of the Stobbe condensation products using sodium acetate in acetic anhydride has been used to convert¹¹⁵ the aldehydes 113 (R = H), 114 (R = H), and 115 (R = H) and the ketones 113 (R = Ph), ¹¹⁶ 114 (R = Ph), ¹¹⁷ and 115 $(R = Ph)^{118}$ into the phenanthrenes 116 (R = H), 117 (R = H)H, X = H), 118 (R = H), 116 (R = Ph), 117 (R = Ph, X = Me), and 118 (R = Ph), respectively.

The Reformatskii reaction has been used to make 4-(naphthyl)butyric acid derivatives from tetralones. In a direct manner, alkyl 4-(1-naphthyl)butyrates are formed from 1-tetralones by reaction with alkyl 4-bromocrotonates, followed by double bond

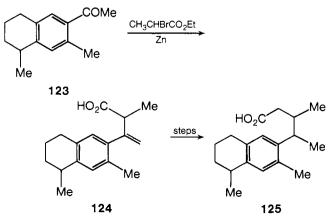

SCHEME II

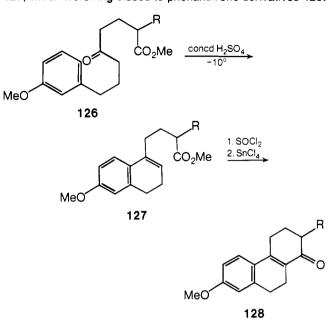


^a The 8-OMe group is replaced by H during the Reformatskii reaction. ^b D. Nasipuri and D. N. Roy, J. Indian Chem. Soc., 40, 327 (1963). ^c D. Nasipuri and A. K. Mitra, J. Chem. Soc., Perkins Trans. I, 285 (1973). ^d G. Stork, J. Am. Chem. Soc., 69, 2936 (1947). ^e J. G. Morgan, K. D. Berlin, N. N. Durham, and R. W. Chesnut, J. Heterocycl. Chem., 8, 61 (1971). ^J M. Tateishi, T. Kusumi, and H. Kakisawa, Tetrahedron, 27, 237 (1971).

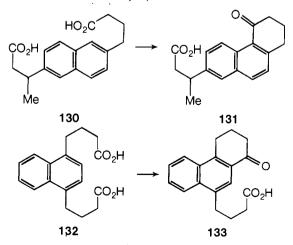


migration under the influence of palladium catalysts at 300 °C (see Table VIII). A less direct approach using alkyl bromoacetates leads to the formation of **119**, followed by reaction with a sodiomalonic ester yielding **120**, which may be cyclized (see Scheme III).

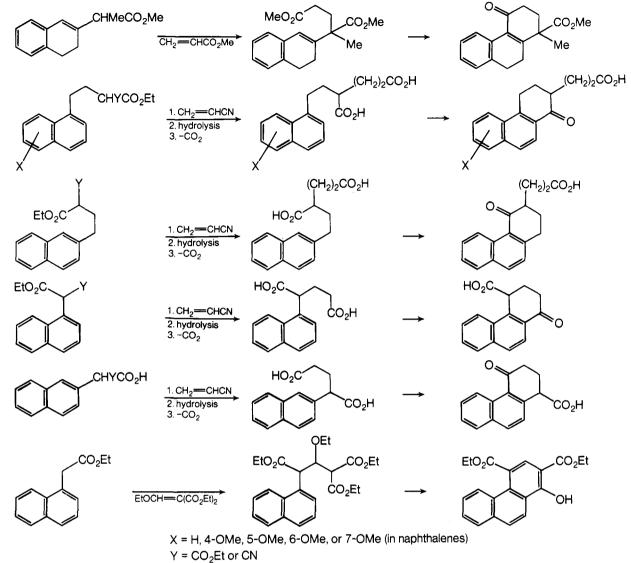

The product 121 of the Reformatskii reaction between 5,8-


dimethyl-1-tetralone and ethyl 2-bromopropionate has been converted¹²³ into **122**, by a double application of the Arndt-Eisert procedure on the intermediate **121a**. Only a single Arndt-Eisert

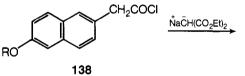
procedure was required during the conversion¹²⁴ of **124**, the Reformatskii product of **123** and ethyl 2-bromopropionate, into **125**.

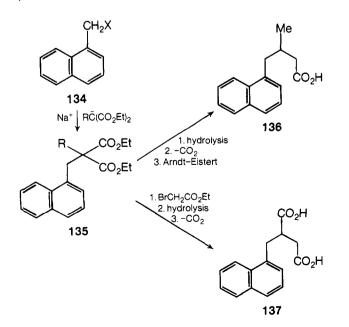

The cyclization of **126** (R = H or Me) (see also section III.B.3) using⁷² cold concentrated sulfuric acid leads to good yields of **127**, which were ring closed to phenanthrene derivatives **128**.

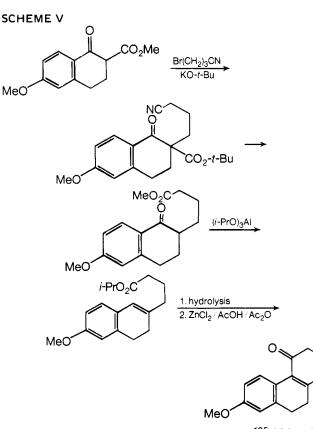
The Michael addition has been used¹²⁵⁻¹²⁷ to prepare a number of naphthylaliphatic dibasic acids suitable for cyclization^{90b, 125, 127, 128} to phenanthrene derivatives (see Scheme IV). This procedure has in general given good yields. An unusual method for the cyclization of this type of dibasic acid, as their cyclic imides **129**, has been described.¹²⁹ Those dibasic acids

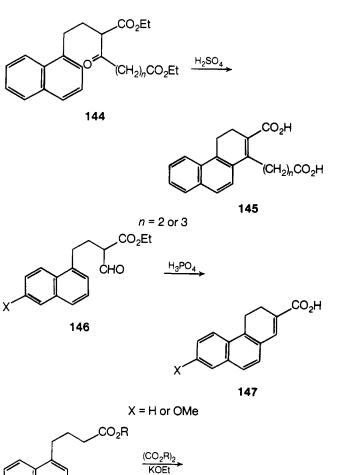


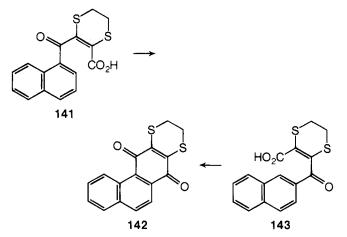
with 2-carboxyalkyl side chains are especially useful in the synthesis of tetracyclic compounds by further intramolecular cyclization. Thus, **130** and **132** were intended for the synthesis of tetracyclic compounds; however, the tetrahydrophenan-thrones **131** and **133** were prepared¹³⁰ as intermediates.



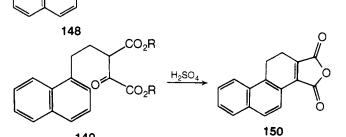

Another approach to naphthylbutyric acids makes use of 1halomethylnaphthalenes. Thus **134** gives **135** on treatment with sodiomalonate esters; the side chain is then stepped up, either by means¹³¹ of an Arndt–Eisert process yielding **136**, or by re-

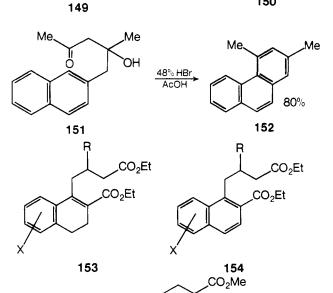



action¹³² with ethyl bromoacetate yielding **137**. A related procedure makes use¹³³ of 2-naphthylacetyl chloride **138**, which with diethyl sodiomalonate yields **139**, readily cyclized to the phenanthrene **140**.



Use has also been made¹³⁴ of the nucleophilic reactivity of 2-alkoxycarbonyl-1-tetralones (see Scheme V).

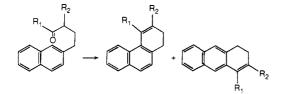

An unusual cycloacylation procedure involves¹³⁵ **141** or the isomeric **143**, which yields **142** on treatment with sulfuric acid.



3. Intramolecular Condensation

The cyclodehydration of suitably constituted 1-naphthylalkanones or alkanals provides a route to phenanthrene derivatives, e.g., 144 \rightarrow 145^{136,137} and 146 \rightarrow 147.¹³⁸ The starting materials are generally prepared from 4-(naphthyl)butyric acids by Claisen condensation, e.g., 148 \rightarrow 149 \rightarrow 150.¹³⁹ 2-Naphthylalkanones or alkanals may also be cyclized, e.g., 151 \rightarrow 152;¹⁴⁰ however, anthracenes as well as phenanthrenes are now possible. The suggestion, that phenanthrene formation is inhibited¹⁴¹ by substitution at the 4 position, does not always seem to hold¹⁴² (see Table IX).

The Diekmann cyclization of suitable naphthalenoid diesters has been used for phenanthrene synthesis. The commonest intermediates have been **153**, often aromatized to **154** before cyclization. The cyclization¹⁴³ of **155** has also been reported. The preparation of **153** has generally involved cyclization of **156** with cold concentrated sulfuric acid. The Diekmann cyclization and decarboxylation of **153** then yields **157** (X = H, R = H;¹⁴⁴ X = 8-Me, R = H;¹⁴⁴ X = H, R = Me;¹⁴⁵ X = 8-Me, R = Me;¹⁴⁵ X = 6-OMe, 7-*i*-Pr, R = H;¹⁴⁶ X = 7-OMe, 8-*i*-Pr, R = H¹⁴⁷). A



155

MeO

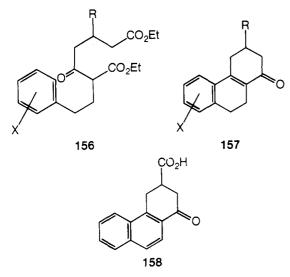
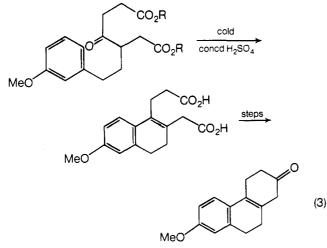
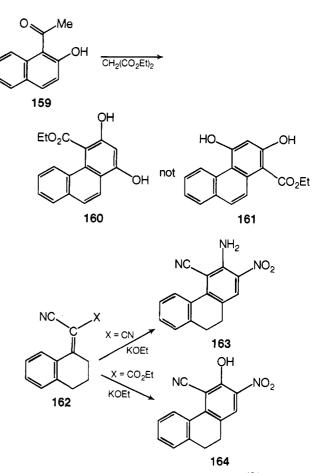

CO₂Me

TABLE IX. Cyclodehydration of Some 2-Naphthylalkanones

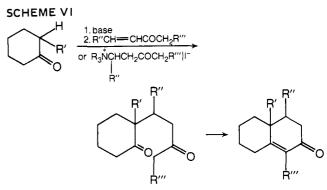


R ₁	R ₂	Product	Ref
Н	Н	Phenanthrene only	141
Me	Н	Phenanthrene + anthracene	141
Et	н	Anthracene only	141
-CH,CH	I,CH,CH,-	Anthracene only	141
CO, Ét	CO, Ét	Phenanthrene only ^a	142

^{*d*} Using 80% H₂SO₄, R₁,R₂= -COOCO-; using 20% H₂SO₄, hydrolysis and decarboxylation occur, R₁ = CO₂H, R₂ = H.

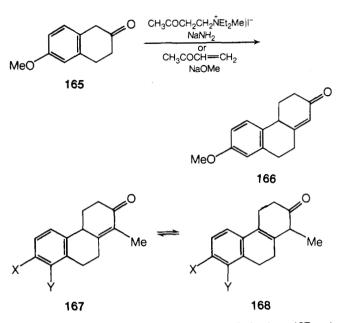


different route was used to obtain **154** ($X = H, R = CO_2Et$), which was cyclized¹³² to yield **158**. A related approach¹⁴⁸ is summarized in eq 3.

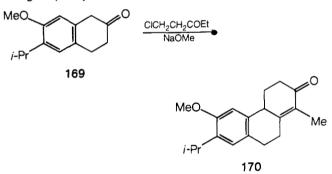


A rather unexpected result (only *Chemical Abstracts* consulted) has been reported,¹⁴⁹ in which **159** is condensed with diethyl malonate yielding **160**, rather than the more readily explicable **161**.

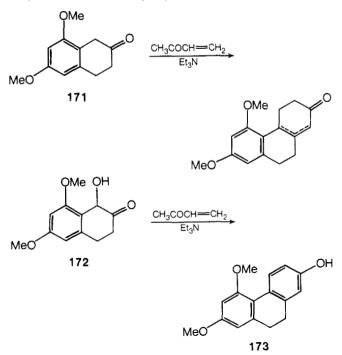
A promising route to 9,10-dihydrophenanthrenes, which has received little attention, involves the base catalyzed condensation¹⁵⁰ of 1-dimethylamino-2-nitroethene with **162** (X = CN or CO₂Et) leading to **163** and **164** in 45 and 38% yield, respectively. There would seem to be scope for further exploitation of this reaction.



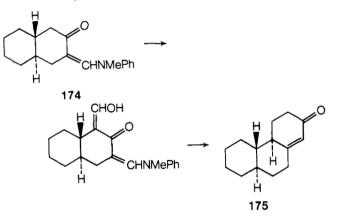
The ring annelation method devised by Robinson¹⁵¹ is among the more important condensation processes by which phenanthrene may be synthesized. The process involves the Michael addition of an enolate anion to an α , β -unsaturated ketone, followed by cyclization involving an aldol-type condensation (Scheme VI).¹⁵² The corresponding Mannich base methiodide may be used with advantage in place of the α , β -unsaturated ketone. This, and related annelations, has been used extensively in steroid syntheses¹⁵³ and is beyond the scope of this review, which in the main is confined to the formation of hydrophenanthrones having no angular alkyl groups. Since many simple derivatives of 1- and 2-tetralones are quite readily prepared, the Robinson method offers considerable scope in the synthesis of such phenanthrones, although the method has been little explored in this direction.



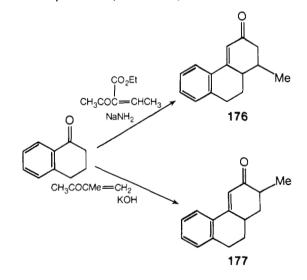
When 1- or 2-tetralones are used, the method yields hydrophenanthrones. Thus the ketone **165** condensed with 4-diethylaminobutan-2-one methiodide in the presence of sodamide¹³⁸ or methyl vinyl ketone in the presence of sodium methoxide¹⁵⁴ gave the hexahydrophenanthrone **166**.


1-Diethylaminopentan-3-one methiodide has also been condensed with 6-methoxy-2-tetralone (**165**),¹⁵⁵ 5-methoxy-2-tetralone,¹⁵⁶ and 6-isopropyl-2-tetralone¹⁵⁷ to give good yields

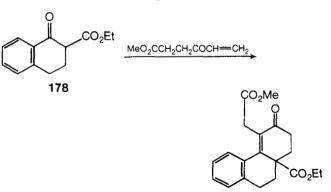
of the corresponding 1-methylphenanthrone derivatives **167** and **168** (X = OMe, Y = H; X = H, Y = OMe; X = *i*-Pr, Y = H) in tautomeric equilibrium. 1-Chloropentan-3-one has also been used as a precursor of ethyl vinyl ketone; thus **169** \rightarrow **170** although in poor yield.¹⁵⁸



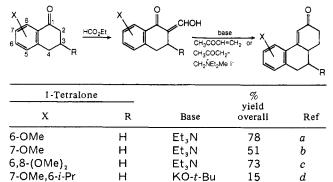
The formation of 2,4-dimethoxy-7-hydroxy-9,10-dihydrophenanthrene (**173**), as a minor side-product in the Robinson annelation of **171** with methyl vinyl ketone, was attributed¹⁵⁹ to the presence of **172** as impurity. When substantiated, this could



prove a useful route to 9,10-dihydrophenanthrols, not otherwise readily prepared.


The direct condensation¹⁶⁰ of either *cis*- or *trans*-2-decalones as their enamines with methyl vinyl ketone leads to a mixture of anthracene and phenanthrene products. These arise owing to competition between positions 1 and 3 of the decalone in the Michael addition process. When the 3 position is first protected, using the method of Birch and Robinson,¹⁶¹ then the resultant *trans*-decalone **174** may be converted¹⁶² by the Robinson procedure to the phenanthrene derivative **175**.

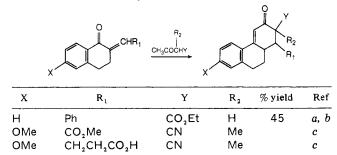
1-Tetralones may also be used as starting materials in the synthesis of phenanthrenes. Thus 1-tetralone may be condensed with either ethyl 2-acetylcrotonate¹⁶³ or methyl 2-propenyl ketone¹⁶⁴ to yield **176** and **177**, respectively. More commonly the 2 position of the 1-tetralone is activated by preliminary formylation using ethyl formate, before application of the Robinson annelation procedure (see Table X).


Similarly 2-alkoxycarbonyl-1-tetralones undergo ring annelation; thus **178** and **180** may be converted into the corre-

179

5,7,8-(OMe)

TABLE X. The Robinson Annelation of 1-Tetralones


^a A. A. Akhrem and I. G. Zavel'skaya, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, 1637 (1960); *Chem. Abstr.*, **55**, 8365 (1961). ^b R. B. Turner, D. E. Nettleton, Jr., and R. Ferebee, *J. Am. Chem. Soc.*, **78**, 5923 (1956). ^c E. Hardegger, N. Rigassi, J. Seres, C. Egli, P. Mueller, and K. O. Fitzi, *Helv. Chim. Acta*, **46**, 2543 (1963). ^d S. K. Sengupta, R. N. Biswas, and B. K. Bhattacharyya, *J. Indian Chem. Soc.*, **36**, 659 (1959).

Et₃N

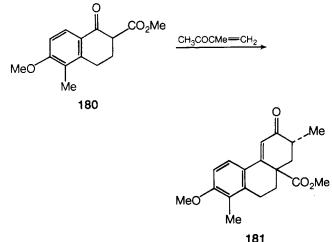
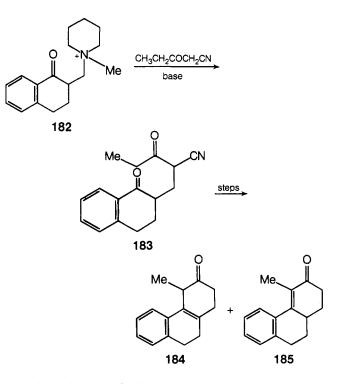

159a

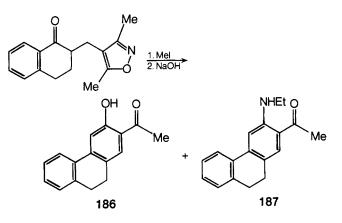
TABLE XI. Cyclization of 1-Tetralones with Ethyl Acetoacetate or 2-Methylacetonitrile

Me

^d D. M. W. Anderson, N. Campbell, D. Leaver, and W. H. Stafford, J. Chem. Soc., 3992 (1959). ^b D. M. W. Anderson and D. Leaver, *ibid.*, 450 (1962). ^c D. K. Banerjee, S. R. Ramadas, G. Ramani, and S. N. Mahapatra, Indian J. Chem., **9**, 1 (1971).



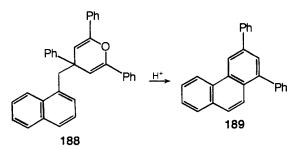
sponding **179** and **181** by treatment with 2-methoxycarbonylethyl vinyl ketone,¹⁶⁶ and methyl 2-propenyl ketone,¹⁶⁶ respectively.

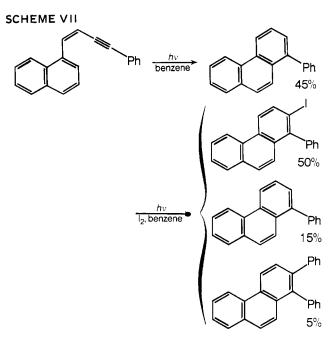

An interesting alternative to the Robinson ring extension involves condensation of a 1-tetralone with an aldehyde, followed by the Michael addition of either ethyl acetoacetate or 2methylacetoacetonitrile and an aldol-type cyclization (see Table XI).

Closely related to this procedure is the method of Brown and Ragault,¹⁶⁷ which involves the Mannich reaction of 1-tetralone, followed by condensation of the product methiodide **182** with propioacetonitrile to yield **183**. Cyclization, dehydration, hydrolysis, and decarboxylation of **183** in concentrated hydrochloric acid gives a separable mixture of the hydrophenanthrones **184** and **185**.

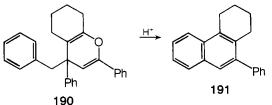
The ring annelation method of Stork¹⁶⁸ has been applied¹⁶⁹

to the formation of the 9,10-dihydrophenanthrenes **186** and **187** in 40% overall yield. There appears to be some confusion in this paper, in that if the reagent used was methyl iodide, then the product **187** should have an *N*-methyl substituent. However, the method is an interesting one, which could be further exploited for the synthesis of simple 9,10-dihydrophenanthrenes.

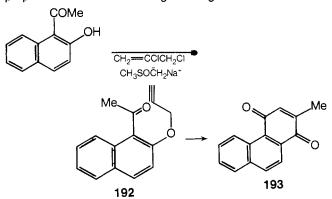


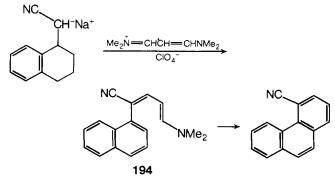

4. Photocyclization

This method is rather limited in scope as suitable naphthalenoid precursors are not readily available. An example is provided by the work of Tinnemans and Laarhoven¹⁷⁰ (see Scheme VII).


5. Miscellaneous Methods

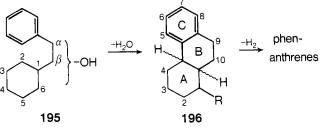
The cyclization of certain dihydropyran derivatives with perchloric acid has led to phenanthrene derivatives. Thus $188 \rightarrow 189$ and $190 \rightarrow 191$ in 94 and 58% yield,¹⁷¹ respectively. Since

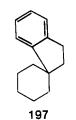



the starting materials are quite readily available,¹⁷² this method seems an attractive one for the synthesis of specific phenan-threnes.

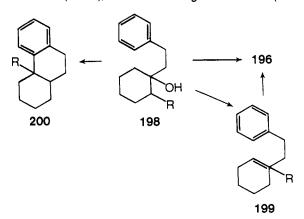
The base-catalyzed reaction of 1-acetyl-2-naphthol with 2,3-dichloropropene leads to the formation first of the propargyl ether **192** and then somewhat unexpectedly to the 1,4-phenanthraquinone **193** in 60% yield. A mechanism has been proposed¹⁷³ for this interesting rearrangement.

3-Dimethylaminopropenylidenedimethylammonium perchlorate is an interesting synthetic reagent capable of further exploitation. Its reaction¹⁷⁴ with the sodio derivative of 1-




naphthylacetonitrile leads to **194**, which undergoes a thermal electrocyclic rearrangement, followed by elimination to yield 4-phenanthronitrile (91%). Clearly this reaction could be of considerable value in phenanthrene synthesis. 2-Phenyl-4-phenanthronitrile was similarly prepared¹⁷⁴ using 3-dimethyl-amino-2-phenylpropenylidenedimethylammonium perchlorate.

D. Cyclization of Stilbenoid Compounds


1. Intramolecular Cycloalkylation

Phenethylcyclohexanols 195 that possess the hydroxyl function at the 1, 2, 3, or β position have been cyclized to octahydrophenanthrenes 196 in the presence of acid catalysts such as phosphorus pentoxide, phosphoric acid, PPA, aluminum chloride, hydrogen halides, or sulfuric acid. The products can be dehydrogenated to the fully aromatic phenanthrenes, and since the starting materials are readily accessible in a number of cases, the process does constitute an attractive method for synthesizing phenanthrenes. The ring-closure reaction often proceeds in high yield (~80%), but is sometimes accompanied by spiran 197 formation. The octahydrophenanthrene 196 may have a cis or trans A/B ring junction, but in the context of aromatic phenanthrene synthesis this geometry is unimportant. The method has been extensively used for the synthesis of terpenes, steroids, and morphine derivatives. A thorough study of the mechanism has been made.8 These topics will not be further considered here.

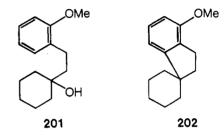
In the Bogart–Cook synthesis a β -phenethylcyclohexan-1-ol **198** (R = H) can be cyclodehydrated to the octahydrophenanthrene **196** (R = H) by concentrated sulfuric acid.¹⁷⁵ Alternatively,¹⁷⁶ milder dehydrating agents (e.g., iodine, potassium hydrogen sulfate, 50% sulfuric acid) convert **198** (R = H) into the olefin **199** (R = H), which can be ring-closed to **196** (R = H)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	3			and the second sec	and the second s						C + +	And an uning and a main of the						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		AND		0	2'		, 4	5,	Other	5	4a	a,	6	7	×	10a	Other	Reagent	% yield	Ref
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			II	1	 I		II	H	B-OH	I	I	I	 I	_	I	Ξ		H,SO,	65	182
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$; 	: I	Ξ	Ξ	Ξ	Ξ	I		I	I	I	I	I	I	I	2	H ₂ SO4		182
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4															6	H₂SO₄	60	176
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		22															²	H₂SO₄	80	188
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~															4a 10	P2O5	06	а
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:			:	4	hv 	70	177
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Me ₄	I	I	I	I	I	I		I	Me	I	I	I	I	I	3	H ₂ S04	92	182
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5															7	AICI		122
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ŧ	Me	I	т	I	I	I		Me	I	T	I	I	I	I		H ₂ SO4		181
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Vle	Ι	I	Me	I	I	Me		I	Me	Me	I	Ι	Me	Ŧ		P_2O_5	86	178
		-	I	I	Me	н	I	Me		I	I	Me	I	I	Me	I		P205	82	178
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Me	I	Me	I	Pri	I	I		I	Me	I	I	Pri	I	I	1-Me	H ₂ SO ₄	82	q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Me	I	Me	Me	I	Pri	I		I	Me	I	Pri	r	Me	I	1-Me	•		183
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· -	: I	I	Me	I	I	OMe		I	I	OMe	I	I	Me	I		AICI	2	179
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	· -	I	I	I	OMe	I	I		I	Т	Ξ	I	OMe	I	Т		H₂SO₄	95	191,
Н Н Н Н ОМе Н Н Н Н ОМе Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н																				187
Н Н Н Н ОМе Н Н ОМе Н Н Н ОМе Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	_	Ŧ	I	I	I	OMe	I	I		I	I	OMe	I	I	I	I		H₂SO₄		187
и н н н н н н н н н н н н н н н н н н н		Ŧ	I	I	OMe	I	I	I		I	I	I	I	I	OMe	I		H ₂ SO4	95	188
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Ŧ	I	I	I	I	OMe	I		I	I	I	OMe	I	I	I		H ₂ SO4	ı ۱	188
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	:	:		i	:		H ₂ S04	75	c, d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Me	I	I	Ū	I	I	Т		I	Me	T	r	I	Ð	I		H ₂ SO4	96	0,
$ (CH)_{1,1} MMe_{1} H H H H H H H H H H H H H H H H H H H$		Me	I	I	ت	I	I	OMe		I	Me	OMe	I	I	Ū	I		H₂SO₄	45	f
СН,СО,Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н		(CH ₂) ₂ NMe ₂	I	I	I	I	I	I		I	(CH ₂) ₂ -H	I	I	Ξ	I	I		H ₃ PO4	60	183a
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01		CH.CO.H	I	Т	I	I	I	I		I		I	I	I	I	н	1-CH,CO,H	H,PO,	80	g, h
0H 0H 0H 0H 0H 0H 0H 0H 0H 0H H H H 0H H H H H H 0H H H H H H H 0H H H H H H H H 1 H		DH	Ξ	I	I	ī	Ξ	Ξ		I	Ξ	I	I	I	I	I	7 7	P_0, 1	70	<i>i</i> , 197
0H H																		P_0,	100	194
0H H H Me H	J	HC	I	I	I	I	I	I	5-Me	Me	I	I	I	I	I	I		H ₂ SO4	63	194
0H H	0	HC	I	I	Me	I	I	Me	α-Me	I	I	Me	I	r	Me	Ξ	9-Me	H₂SO₄	50	k
ОН Н Н Ме Н Н Ме Н Н Ме Н Н Ме Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н H </td <td></td> <td>HC</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td></td> <td>I</td> <td>I</td> <td>I</td> <td>Ξ</td> <td>I</td> <td>I</td> <td>Me</td> <td></td> <td>P_2O_5</td> <td></td> <td><i>l</i>, 194</td>		HC	I	I	I	I	I	I		I	I	I	Ξ	I	I	Me		P_2O_5		<i>l</i> , 194
OH H H Me H		HC	I	I	Me	I	I	Me		I	I	Me	I	I	Me	CO ₂ Et		P_2O_5		194
ОН, Ме Н H </td <td></td> <td>HC</td> <td>I</td> <td>I</td> <td>Me</td> <td>I</td> <td>I</td> <td>Me</td> <td>5-Pri</td> <td>Prⁱ</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>Me</td> <td>CO_2Et</td> <td></td> <td>P₂05</td> <td></td> <td>j</td>		HC	I	I	Me	I	I	Me	5-Pri	Pr ⁱ	I	I	I	I	Me	CO_2Et		P ₂ 05		j
OH, Me H H H H H H H H H H H H H H H H H H			I	I	τ	I	Pri	r		I	Me	I	Pr'	I	I	I		P ₂ 0,	80	189
ОН Н Н Н Н Н Н Н Н	5		I	I	I	I	I	I		I	Me	I	T	I	I	I		P2O5		1
ОН, МЕ Н Н ОМЕ Н Н Н 5-ОМЕ ОМЕ МЕ Н Н Н ОМЕ Н Н ⁻ 83 ОН, МЕ Н Н ВГ Н Н И ОМЕ Н Н ВГ Н Н 150, 78 N ОН, МЕ Н Н И СІ Н Н ВГ Н Н 20, 78 N ОН, МЕ Н Н Н И И СІ Н Н Н И СІ Н Н Н Н Н Н И СІ Н Н Н Н Н Н Н Н И СІ Н Н Н Н Н Н Н Н Н АСІ, 82 0 ОН, ЕТ ОН, МЕ Н Н Н И СІ Н Н Н Н Н Н Н Н АСІ, 82 0 0 ОН Н Н Н Н Н И СО ЕТ Н ОН Н Н Н Н Н АСІ, 82 0 0 ОН Н Н Н Н Н Н АСІ, 82 0 0 ОН Н Н Н Н Н Н АСІ, 82 0 0 ОН Н Н Н Н Н Н АСІ, 82 0 0 ОН Н Н Н Н Н АСІ В АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІ В АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н АСІС, 82 0 0 ОН ВГ Н Н Н Н Н Н ВГ Н ВГ Н ВГ Н ВГ Н В	0	HC	I	I	I	I	I	I	α-Me	I	I	I	I	I	I	Τ	10-Me	H₂SO₄		k
ОН, МЕ Н Н ВГ Н Н ОМЕ Н МЕ ОМЕ Н Н ВГ Н Н ₃ SO ₄ 78 N OH, МЕ Н Н СГ Н Н Н МЕ ОМЕ Н Н ВГ Н Н ₃ SO ₄ 78 N OH, МЕ Н Н Н СГ Н Н Н СС Н Н ₃ SO ₄ 82 OH ME Н Н Н Н И СС Н Н ₃ SO ₄ 82 OH OH, ET Н Н Н Н И СС Н Н 2006 ОМЕ Н Н Н И СС Н OH, ET Н Н Н Н Н Н АСС H OH H H H H H H H H H H H H ACC ¹ OH, ET N H H H H H H H H H H H H H H H H H H	J		I	I	OMe	I	I	I	5-OMe	OMe	Me	I	I	т	OMe	I		ΞH	83	ш
оң ме н н с н н н ч н н ме н н н с н н ₃ So, 82 он ме н н н с н н ₃ So, 82 он он ме н н н с н п и г н ₃ So, 82 он он е и и н н н и с н и и и и и и и и и и и и	0		I	Ξ	Br	н	I	OMe		I	Me	OMe	I	I	Br	I		H₂SO₄	78	f
^{2Et OH, Me H H H H H H OMe 5-OMe OMe Me OMe H H H H CO₂Et H₂SO₄ 2 OH, Et H H H H H H H H H H H H H H H H H H}		OH, Me	I	I	ū	Ι	I	I		I	Me	I	I	I	Ū	Ξ		H ₂ SO ₄	82	в
он, Е Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	Et		I	I	I	I	I	OMe	5-OMe	OMe	Me	OMe	I	Ξ	I	CO,Et		H,SO,		u
ОНННИИИИИ И НИИИИ И ПИИИИ Р ₂ 0, 60] Р ₂ 0, 82]	-		I	I	I	I	I	T		I	Et	I	I	I	I	т		AlCI		0
82	-	Ŧ	НО	I	I	I	I	I		I	I	T	I	T	I	T		P20,	60	197
																		P20,	82	196

TABLE XII. Cyclization of eta-Phenethylcyclohexanols

[89 [98

50

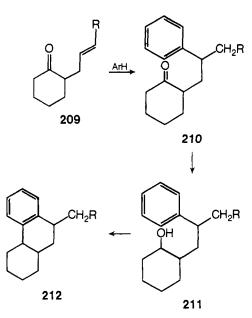

P_0,

3-Pri

[ABLE XII (continued)

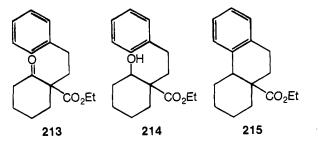
ΤI	ΙÍ	HO HO	ΙI	II	II	II II			н Me	ΙI	ΙI	ΞI	ΙI	ΙI	3-pri		P_0,	50	189 198
^{<i>a</i>} J. van Y. Pietras 74, 4091 and A. D.	⁴ J. van de Kamp and E. Mosettig, J. Am. Chem. Soc., 58, 1062 (1936). ^b S. N. Slater, J. Chem. Soc., 68 (1941). ^c M. Mousseron-Canet and J. C. Guilleux, Bull. Soc. Chem. Fr., 3858 (1966). ^d H. Christol, V. Pietrasarta, and J. L. Vernet, C. R. Acad. Sci., Ser. C, 270 , 1477 (1970). ^e R. A. Barnes and M. D. Konort, J. Am. Chem. Soc., 75, 303 (1953). ^f R. A. Barnes, H. P. Hirschler, and B. R. Bluestein, <i>ibid.</i> , 74, 4091 (1952). 8.1. O. Jilek, E. Adlerova, and L. Novak, <i>Experientia</i> , 13, 71 (1957). ^f R. A. Barnes and A. D. O. Jilek, E. Adlerova, and L. Novak, <i>Experientia</i> , 13, 71 (1957). ^f R. A. Barnes and A. D. Olin, <i>J. Am. Chem. Soc.</i> , 75, 00009 and F. Collomb, <i>Bull. Soc. Chim. Fr.</i> , 3858 (1957). ^f R. A. Barnes and A. D. Olin, <i>J. Am. Chem. Soc.</i> , 78, 00000, 2000 (1956). ^{J. C.} Egridhan and S. C. Sengupta, J. Chem. Soc., 2798 (1932). ^f X. J. Colompe and F. Collomb, <i>Bull. Soc. Chim. Fis.</i> , 713, 7320, 0000, J. C. Egridhan and S. C. Sengupta, J. Chem. Soc., 2798 (1932). ^f X. J. Colompe and F. Collomb, <i>Bull. Soc. Chim. Fis.</i> , 713, 73, 701, 0000, J. C. Egridhan and S. C. Sengupta, J. Chem. Soc., 2798 (1932). ^f X. J. Colompe and F. Collomb, <i>Bull. Soc. Chim. Fis.</i> , 713, 732, 701, 0000, J. C. Egridhan and S. C. Sengupta, J. Chem. Soc., 2798 (1932). ^f X. J. Colompe and F. Collomb, <i>Bull. Soc. Chim. Fis.</i> , 73, 710, 0000, J. C. Egridhan, J. Chem. Soc., A. D. Chim. Soc., 78, 185, 1951, 1951, J. A. D. Chen. Soc., 79, 2010, 500, 500, 500, 500, 500, 500, 500,	. Mosettig 'ernet, <i>C</i> . ilek and N	1, <i>J. Am</i> <i>R. Aca</i> M. Proti , 78 , 38	ı. Chem. 1 id. Sci., Sv iva, Chem 130 (1956	Soc., 58 , 10 er. C, 270 ,] I. Listy, 51 , i). ⁷ J. C. Bat	62 (1936) 1477 (197 643 (195 64a (195	. ^b S. N. Sl _č 0). ^e R. A. I 1); Chem. <i>i</i> 5. C. Sengu	ater, J. Ch Barnes an 4 <i>bstr.</i> , 51, upta, J. CJ	v. Slater, <i>J. Chem. Soc.</i> , 68 (19, - A. Barnes and M. D. Konort, <i>J. Barnes</i> and M. D. Konort, <i>J. Barnes</i> and M. D. Konort, <i>J. Bar. Abstr.</i> , 51, 11306 (1957). <i>Bar. Abstr.</i> , 21, <i>Chem. Soc.</i> , 2798 (8 (1941). ^C M. nort, J. Am. C ^h 57). ^h M. Provi	Mousseron-Canet and J. C. Guilleux, Bull. Soc. tem. Soc., 75, 303 (1953). J R. A. Barnes, H. P. tta, J. O. Jilek, E. Adlerova, and L. Novak, <i>Exp</i> J. Colonge and F. Collomb, Bull. Soc. Chim. Fi	Canet an 75, 303 (ek, E. Ac and F. C	id J. C. G 1953). <i>J</i> F dlerova, a ollomb, <i>I</i>	uilleux, I 3. A. Bar nd L. No 3ull. Soc.	Jull. Soc. Cl nes, H. P. Hi vak, Experit Chim. Fr.,	tem. Fr., irschler, a entia, 13, 18, 285 (3858 (19 and B. R. 71 (1957) (1951). ¹ G	66). ^d H. Bluesteir (). ⁱ R. A. Bluesteir (). A. R. J). ^d H. Christol, jestein, <i>ibid.</i> , ^t R. A. Barnes A. R. Kon, J.
<i>Chem.</i> So Fulton an	<i>Chem. Soc.</i> , 1081 (1933).‴W: B. Rentrow, A. Rentrow, E. Shoun, and C. A. Sears, J. Am. Chem. Soc., 73, 517 (1931)." Fulton and R. Robinson, <i>J. Chem. Soc.</i> , 1463 (1933). <i>P</i> J.C. Bardhan, R. N. Adhya, and K. C. Bhattacharyya, <i>ibid.</i> , 1346 (Rentro Soc., 1	w, A. Rei 463 (193	ntrow, E. Sl 33. <i>P</i> .J. C. B	ardhan, R.	C. A. sears . N. Adhya	s, J. Am. C I, and K. C	Sears, J. Am. Cnem. Soc., 13, 31 (dhya, and K. C. Bhattacharyya, 1	73, 317 (1931 aryya, ibid., 13	.). т. н. н. в. 146 (1956).	en lies, m			. * K. A. Barnes, H. P. Huschel, and D. K. Duestein, (6 (1956).	(elli), tota.	1 20 44 6	.19001	
TABLE	TABLE XIII. Cyclization of Ketones and Diketones	ion of K	(etone:	s and Di	ketones														
	1	3	4	5	9	δ	2,	э,	5'		1	2	e	4	5	7	8	10	Ref
	COLET	II	I	Pri	I		Me	I	T		Ξ	Pri	I	н	H		Me	I	а
ĉ	H	Ţ	I	ľ	: I	Me	Ι	I	I	7	I	I	I	I	I	-	Т	Me	q
4, 2,	I	I	Me	I	I	Me	Ξ	Ξ	I	6	I	I	Me	I	I	-	I	Me	q
Ĭ `	I	Me	I	_	Me	Me	Ι	Ţ	Ţ		Me	I	I	Me	I	-	I	Me	q
)))	Ì	Me	I	I	0	I	I	Ι	I	~ }	0=	I	I	Me	I I		Т	I	72a
	İ	I	I	I	0=	: I	I	OMe	I	4	0=	I	Ξ	I	0 I	OMe	Т	I	73, 205
4 6	Ξ	I	I	I	0=	Ξ	Ι	I	Ξ	3	0=	I	I	I	I I		I	I	206
¢ ∕∿	I	Ι	I	I	0=	Ι	OMe	I	OMe	}∾	0=	I	I	r	OMe H	-	OMe	I	c
	I	I	I	I	0	I	I	OMe	I		0=	I	I	I	н	OMe	I	I	q
^d J. C. B 73, 10956	d J. C. Bardhan and S. C. Sengupta, J. Chem. Soc., 2798 (1932). b J. Colonge and F. Collon 73, 109568 (1970). dA. J. Birch, H. Smith, and R. E. Thornton, J. Chem. Soc., 1339 (1957)	Sengupi I. Birch, F	ta <i>, J. C</i> l 1. Smitl	h <i>em. Soc.</i> h, and R.	., 2798 (19: E. Thornto	32). ^b J. Cc n, J. Chem	longe and 1. <i>Soc.</i> , 133	F. Collor 39 (1957)	ib, C. R. A.	and F. Collomb, C. R. Acad. Sci., Ser. C, 237, 547 (1950). ^C S. Imai, J. Sci. Hiroshima Univ., Ser. A, 33 (1969); Chem. Abstr., , 1339 (1957).	7, 237 , 547	(1950).	s. Imai,	J. Sci. H.	roshima Un	iv., Ser. A	4, 33 (19(59); Chei	n. Abstr.,


with stannic chloride. The olefin **199** (R = H) has also been¹⁷⁷ photocyclized to 196 (R = H) in good yield. The required alcohol **198** (R = H) is usually prepared by the interaction of the Grignard reagent derived from a β -phenethyl bromide and a cyclohexanone. If a substituted cyclohexanone is used, the alcohol, e.g., 198 (R = alkyl) may be cyclized to either 196 (R = alkyl) or 200 (R = alkyl).^{122,178,179} Thus with **198** (R = CH₂CO₂H) only **196** $(R = CH_2CO_2H)$ was isolated,¹⁸⁰ whereas with **198** (R = Me, $CH_2CH = CH_2$, or $CH_2CH_2NMe_2$) the 4a-substituted octahydrophenanthrene **200** is formed.^{181–185} When an alkyl or alkoxyl group is at the position meta to the side chain in the phenyl ring, cyclization can proceed to yield the 5- or the 7-substituted phenanthrene derivative.^{181,184–187} The nature and position of substituents in the aromatic ring can also influence the proportions of spiran formed. Thus, when 201 is treated¹⁸⁸ with con-

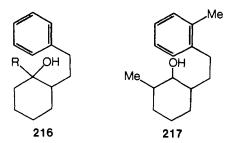

centrated sulfuric acid a 95:5 mixture of octahydrophenanthrene and spiro compound 202 is formed, whereas when the isomeric m-methoxyphenethylcyclohexan-1-ol is similarly treated, the ratio of phenanthrene to spiran is reversed.

The assumption has been made^{182,189} that the mechanism of the cyclization reaction to octahydrophenanthrenes, using concentrated sulfuric acid, involves initial dehydration followed by cyclization of the olefin produced. This assumption is now known to be erroneous,⁸ although it is known that olefins can be cyclized to octahydrophenanthrenes. 190

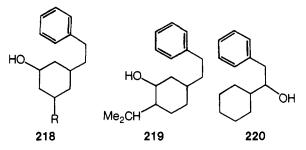
A modification to this general approach involves¹⁹¹ the treatment of, for example, 203 with mercuric acetate and perchloric acid when a mixture of 204 + 205 (R = H) is produced in a total yield of 55 %. The isomeric cyclohexene 206 is cyclized to 207 (R = H) in 40% yield with mercuric perchlorate in acetic acid.¹⁹² Similarly the olefins 208 (R = H or OMe) can be converted¹⁹³ into 207 (R = H or OMe) and 205 (R = H or OMe).



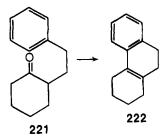
A 2-(\beta-phenethyl)cyclohexanol can also be cyclodehydrated to a phenanthrene derivative¹⁹⁴ under acid conditions. The reguired alcohol can be obtained⁷⁹ by the interaction of 2-allylcyclohexanone derivatives with an aromatic ring (the Colonge-Mukherji reaction), followed by reduction of the intermediate



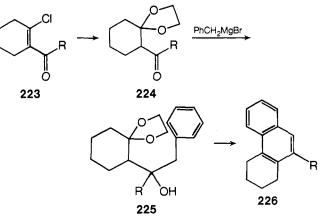
ketone, i.e., $209 \rightarrow 210 \rightarrow 211 \rightarrow 212$. This method has been used quite extensively.


Alternatively, the potassium salt of a derivative of ethyl cyclohexanone-2-carboxylate is alkylated by a β -phenethyl halide. The keto ester **213** is then hydrolyzed, decarboxylated, and reduced to the required alcohol.¹⁹⁴ In those derivatives of **213** where removal of the ethoxycarbonyl group is difficult, reduction to **214**, followed by cyclization yields **215** from which the bridgehead substituent is removed upon dehydrogenation.¹⁹⁴

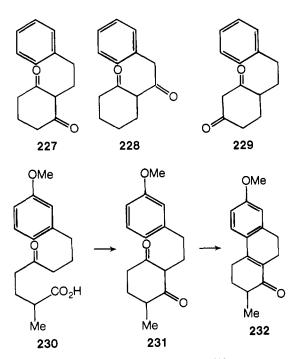
In a further variation a 2-(β -phenethyl)cyclohexanone is allowed to react with a Grignard reagent to form a tertiary alcohol **216**, which is then cyclized to a 4a-substituted octahydrophenanthrene.¹⁸⁹ Although overall yields are low, the methods outlined above are suitable¹⁹⁴ for the preparation of those phenanthrenes with an unsubstituted C-ring since β -arylethyl halides are readily available. Dehydrogenation of the intermediate octahydrophenanthrenes is usually easily accomplished. However, it has been reported¹⁹⁵ that cyclization of **217**, followed by dehydrogenation, yields 1,8-dimethylphenanthrene.


The cyclodehydration of 3-(β -phenethyl)cyclohexanol **218** (R = H) was found by Pal¹⁹⁶ and by Ray¹⁹⁷ to produce 1.2,3,4,4a,9,10,10a-octahydrophenanthrene. The process has not been generally applied to the synthesis of phenanthrenes since the required cyclohexanols are not readily accessible. However, 2-methyl-¹⁹⁸ and 3-isopropylphenanthrene¹⁸⁹ have been prepared from **218** (R = Me) and **219**, respectively.

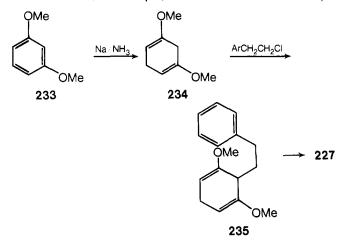
The cyclization of alcohols of the type **220** was first reported by Bogart, ¹⁸² but overall yields are low and the reaction appears to be an unattractive one (see Table XII).


2. Intramolecular Condensation

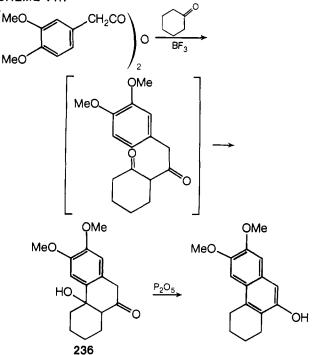
In this process a suitable β -phenethylcyclohexanone (221) is cyclized, under acid conditions, to a hexahydrophenanthrene (222). The earlier literature has been reviewed by Fieser and Fieser⁴ and by Popp and McEwen.¹⁹⁹ Some more recent examples are summarized in Table XIII.

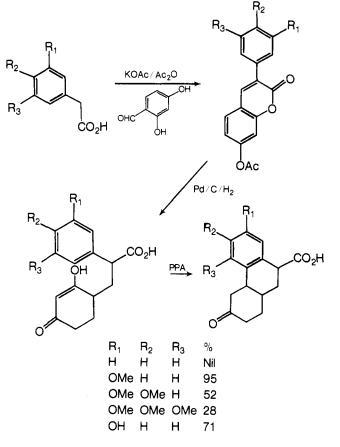


A modified Colonge–Mukherji reaction has been used in which the cyclohexanone derivative, formed by the interaction of 2allylcyclohexanone with the aromatic compound, is cyclized (sulfuric acid or hydrogen bromide in acetic acid). If the aromatic ring is activated to electrophilic attack, the cyclization reaction can be accomplished in one step.^{200,201} Generally C₁₀-substituted hexahydrophenanthrenes are formed, although the method has also been used²⁰² for compounds unsubstituted at C₁₀. When 2- β -phenethylcyclohexanone itself is treated with PPA²⁰³ a mixture of 1,2,3,4-tetrahydro- and 1,2,3,4,4a,9,10,10a-octahydrophenanthrenes is produced.


2-Acyl-1-chlorocyclohexenes **223** (R = Me, Et, or Pr^{i}), obtained by the reaction between cyclohexanone and the acyl chloride, have been converted via the ketals **224** and **225** into the phenanthrenes **226**, R = Me, Et, or Pr^{i} , respectively.²⁰⁴

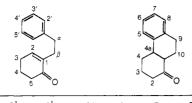
Hydrophenanthrones can be prepared from cyclohexane-1,3-dione derivatives of the types **227**, **228**, and **229**. Compounds of the type **227** have been prepared^{72a,73,205} by the cyclization of appropriate 5-oxo-8-aryloctanoic acids (see also sections III.B and III.C), for example, **230** \rightarrow **231** \rightarrow **232**. The octanoic acids themselves are available from the reaction of a 4-phenylbutyroyl chloride with ethyl sodio- α -acetylglutarate.^{72a,73,122,205}


The diketones **227** can also be obtained²⁰⁵ by alkylation of dihydroresorcinols with β -arylethyl halides or by use²⁰⁶ of the Birch reduction, for example, **233** \rightarrow **234** \rightarrow **235** \rightarrow **227**. 1.3-

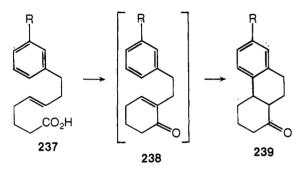

Diketones of the type **228** may be involved²⁰⁷ when an arylacetic acid anhydride is condensed with cyclohexanone in the presence of boron trifluoride. Acylation and cyclization occurred to provide **236** in 68% yield from homoveratric acid (Scheme VIII). Substituted cyclohexanones have been used but only those arylacetic acids carrying electron-releasing substituents and not sterically hindered by ortho substitution have been successfully reacted.²⁰⁷

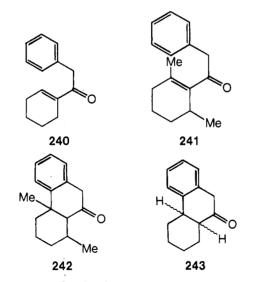
Syntheses of phenanthrenes involving diketones of the type **229** were devised by Walker^{208,209} and are summarized in Scheme IX. The phenylacetic acids must possess one or more methoxyl (or hydroxyl) group, but 2,4-dihydroxybenzaldehyde can be replaced by 2,5-dihydroxy- or 2,4,6-trihydroxybenzaldehyde or by phloroacetophenone.

 β -Phenethylcyclohexenones are²¹⁰ cyclized by PPA to provide 1-ketooctahydrophenanthrenes in good yield (see Table XIV). The required starting materials have been obtained by the cyclization of suitable alkenoic acids (see section III.B). Thus if **237** (R = H or Cl) is treated⁶⁹ with PPA, the phenanthrene derivative **239** (R = H or Cl) is produced in 17–45% yield. Good yields of **239** are realized if the acid chloride of **237** is allowed to react with acetyl tetrafluoroborate or silver tetrafluoroborate; with the latter reagent, the intermediate **238** can be isolated. When **237** (R = OMe) is similarly treated,⁷⁰ the phenanthrone **239** (R = SCHEME VIII

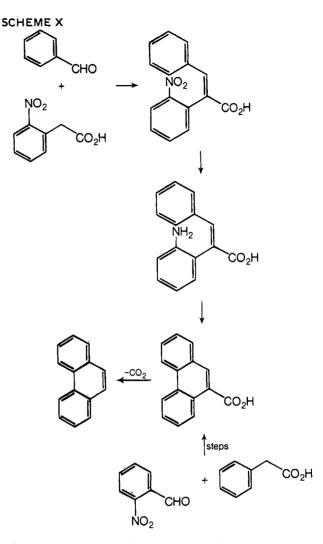


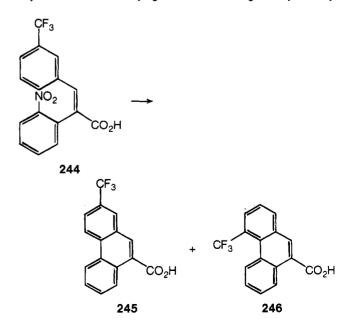
SCHEME IX

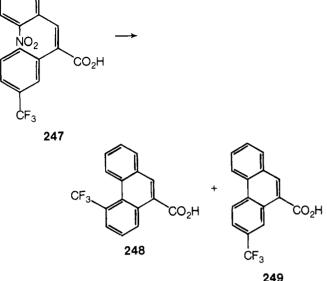

OMe) is produced in 15% yield only. Cyclization of **240** with aluminum trichloride results^{211,212} in **243** in only 5% yield, but when a mixture of phenylacetyl chloride and cyclohexene is treated with aluminum trichloride, **243** is produced²¹³ in 55% yield; presumably **240** is an intermediate. However, when **241** is cyclized²¹⁴ with PPA, the yield of **242** is 90%. Photocyclization of **240** was more successful;²¹⁵ the cis/trans mixture **243** was formed in 87% yield when a benzene solution of **240** containing boron trifluoride etherate was irradiated.



2	2'	31	4 ¹	4a	6	7	8	%	Ref
Me	Н	Н	Н	Me	Н	Н	Н		a
Me	Н	н	Н	Me	Н	Н	Н	66	210
Me	H	н	Н	Me	н	н	Н	70	b
Me	н	OMe	н	Me	н	OMe	Н	89	210
Me	н	OMe	н	Me	н	OMe	н	65	b
Me	H	Pr ⁱ	Н	Me	н	Pr ⁱ	н	65	b
Me	н	Pr <i>i</i>	н	Me	н	Pr ⁱ	н	65	с
н	OMe	н	OMe	н	OMe	н	OMe		d


^aJ. A. Barltrop and A. C. Day, Chem. Ind. (London), 1450 (1959). ^bG. Stork and A. Burgstahler, J. Am. Chem. Soc., **73**, 3544 (1951). ^cM. Sharma, U. R. Ghatak, and P. C. Dutta, Tetrahedron, **19**, 985 (1963). ^aS. Imai, J. Sci, Hiroshima Univ., Ser. A-2, **35**, 161 (1971); Chem. Abstr., **77**, 61657 (1972).


3. The Pschorr Synthesis


The Pschorr reaction is the name given to a group of related procedures whereby polycyclic systems are formed by the union of two aryl nuclei, effected by the decomposition of an appropriate diazonium salt. Pschorr himself²¹⁶ was concerned with the production of phenanthrenes (Scheme X), and the method constituted the first route for the preparation of substituted phenanthrenes with substituents in known orientations. The method, which is still used extensively for phenanthrenes, has also been used in the preparation of polycyclic systems and for the synthesis of certain alkaloids.^{5d} Two previous reviews^{5a,b} have surveyed the scope of the reaction, and a tabular summary of all reactions reported up to 1956 has been included in one of them.^{5a} A description has also been given^{5a} of all of the stages of the synthesis (preparation of the α -(o-nitroaryl)-trans-cinnamic

acid, reduction to the amine, diazotization and ring closure, and decarboxylation of the phenanthrene-9-carboxylic acid formed). Although the reaction sequences are still widely used, there are certain limitations. Thus, *o*-nitrobenzaldehydes and substituted phenylacetic acids are often difficult to obtain so that the α -aryl-*trans*-cinnamic acids are inaccessible. Overall yields in the five-stage synthesis are often low.

Cyclization to phenanthrenes has been achieved with α arylcinnamic acids carrying one or more halogen, alkyl, alkoxy,

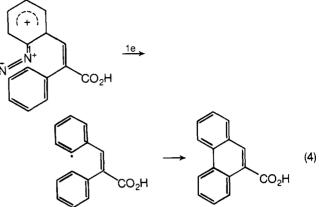
nitro, amino, cyano, ester, or hydroxyl functions in most positions around the ring system. Although 4,5-dialkoxy substituted phenanthrenes have been prepared by the Pschorr route, 4,5-dialkyl substitution is much more difficult to achieve, presumably owing to steric hindrance. When the substituents in the rings of the cinnamic acid are unsymmetrically placed, cyclization can result in a mixture of two products. Recent examples²¹⁷ are **244** \rightarrow **245** + **246** and **247** \rightarrow **248** + **249**. Blocking one of the sites of cyclization with Br (which can be removed subsequently by reduction) has been used frequently to obtain isometrically pure phenanthrenes.

A summary of the literature from 1957 to date on phenanthrenes prepared by the Pschorr reaction appears as Table XV.

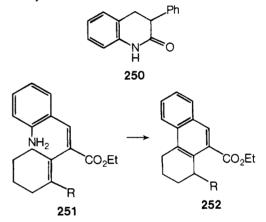
A number of sets of conditions has been used²¹⁸ to decompose the diazonium salt to effect the cyclization, and these are the following:

A. Copper-catalyzed decomposition in aqueous sulfuric acid solution (Pschorr's original method).

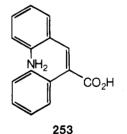
B. Thermal decomposition in aqueous acid solution in the absence of copper.


C. Copper-catalyzed decomposition in aqueous alkaline solution.

D. Thermal decomposition of a suspension of the diazonium fluoroborate in acetone in the presence of copper.


The mechanism of the Pschorr reaction has been the subject of considerable investigation in recent years, and this work has been reviewed by Williams²¹⁸ and by Abramovitch.^{5c,219} Both homolytic and heterolytic pathways have been considered; it is now generally accepted that the precise mechanism operative will depend very largely upon the conditions of the reaction, which also affect the yield considerably.

Gellert and Chauncy^{220,221} found that yields of cyclized product can be improved substantially by diazotizing the amine with amyl nitrite in acetone, followed by the addition of sodium iodide; very little 2-iodo- α -phenylcinnamic acid is formed. The iodide ion may be²²² responsible for the production of a redox system involving aryl and iodine radicals. In the copper-catalyzed reaction it is postulated²²² that a redox system is involved with the generation of aryl radicals which are not free, but which are held on the copper surface. When the 2-diazonium α -arylcinnamic acids are treated with pyridine,²²³ or reduced electrochemically in aprotic solvents,²²² free radicals are formed which then cyclize to phenanthrenes in high yield (eq 4).


Various modifications of the Pschorr cyclization have been examined; a popular one involves²²⁴ the condensation of a benzaldehyde with a phenylacetonitrile, followed by cyclization, hydrolysis of the resulting 9-phenanthronitrile, and decarboxyl-

ation. It seems, however, to offer very little advantage. 9,10-Dihydrophenanthrenes can²²⁵ be obtained from dihydrocinnamic acids via 3-phenyl-3,4-dihydrocarbostyrils **250**. An interesting variation involves^{226,227} the cyclization of **251** (R = H or Me), when a tetrahydrophenanthrene **252** (R = H or Me) results in about 30% yield.

An intriguing reaction was reported by Sieper²²⁸ who found that when **253** is treated with *N*-nitrosodiphenylamine, phenanthrene-9-carboxylic acid is the product.

4. Photocyclization of Stilbenes

Stilbenes may undergo one or more different types of photochemical reactions, depending upon conditions,^{229,230} The more important ones are isomerization, dimerization, and cyclodehydrogenation. This section of the review is concerned with the latter reaction, and will be confined to a survey of the conversion of simple stilbenes to phenanthrenes, although interesting and useful applications of the photocyclodehydrogenation reaction have also been made to polynuclear aromatic structures^{6,231} and to heterocyclic compounds.²³² This discussion will concentrate upon work that has been published since the review by Stermitz,^{6a} although, for the sake of completeness, Table XVI contains the material summarized previously.

The photochemical transformation of stilbenes to phenanthrenes was established in the early 1950's.^{233,234} In the last 10–15 years, the reaction has been shown^{6a,231} to provide a valuable synthetic route to certain types of substituted phenanthrenes (Table XVI), especially since stilbenes themselves

TABLE XV. Phenanthrenes by Pschorr Reaction

R ₁	R ₂	قز R ₃	R4	R ₅	R ₆	R ₇	R ₈	Conditions	Yield	Ref
н	Н	н	н	Н	O-CH ₂ CH	H_2-0	Н	HNO ₂ , H ₂ SO ₄ , Cu	8.2	a
Н	Н	Н	н	O-CH ₂ CH		н	Н	HNO ₂ , H ₂ SO ₄ , Cu	3.1	а
н	0-CH2-C		н	Н	0-CH2-0		Н		21	b
н н	O-CH₂-C O-CH₃-C		H H	O-CH₂-C		H H	H Br		8	b b
OMe	н Н	н	Н	О-СН,-С Н	, 0CH₂(ы Н	H₂SO₄/MeOH, NaNO₂, Cu	10	c c
H	н	OMe	OEt	н	H	́н	Н	$H_2SO_4/MeOH, NaNO_2, Cu$	65	d
н	Н	OEt	OMe	Н	Н	Н	н	H ₂ SO ₄ /MeOH, NaNO ₂ ; Cu	63	d
н	н	Н	н	н	Н	н	н	AmONO/acetone, $\Delta + I_2$	70	220
н	OMe	OMe	н	н	Н	Н	н	AmONO/acetone, Δ + I_2	72	221
н	OMe	OMe	н	Н	OMe	Н	Н	AmONO/acetone, $\Delta + I_2$	60	221
н	OMe	OMe	н	OMe	OMe	Н	Н	AmONO/acetone, $\Delta + I_2$	45	221
Н	OMe	OMe	н	Н	OMe	OMe	Н	AmONO/acetone, $\Delta + I_2$	45 55	221
н н	OMe H	OMe H	H H	H H	Me H	H H	H Me	AmONO/acetone, $\Delta + I_2$ AmONO/acetone, $\Delta + I_2$	55 65	221 221
H	OMe	Н	OMe	H	Н	OAc	H	Amono/acetone, $\Delta + \Gamma_2$	10	221 e
н	0-CH2-C		Н	OMe	OMe	OMe	н		10	f
Н	OMe	OMe	н	OMe	OMe	Н	н	BuONO/acetone		g
н	н	OMe	OMe	OMe	OMe	Н	Br	AmONO, NaH ₂ PO ₂ , Cu	10	ĥ
н	н	OMe	OMe	OMe	OMe	Н	Н	AmONO, NaH ₂ PO ₂ , Cu	20	h
н	OMe	OMe	Н	Н	OMe	Н	Н	NaNO ₂ , Cu-bronze	56	i
Н	OMe	OMe	Н	Н	OMe	OMe	Н		4.5	j
н	OMe	OMe	н	OMe	OMe	Н	н		3.5	j
н	H OMe	OMe	Н	н	OMe	OMe	Н	BuONO, acetone, Cu	41 42	k l
н Н	OMe	O-CH ₂ - OMe	-0 Н	H H	OMe OMe	OMe H	H H	PentyIONO/Cu	42	m
H	OMe	OMe	н	OMe	H	OMe	Н	AmONO, Cu	31	n
н	OMe	OMe	н	OMe	OMe	OMe	н	AmONO, Cu	30	n
н	н	OMe	OEt	Н	н	OMe	OEt	· · · , - ··		0
н	н	OMe	OEt	н	н	OEt	OMe			0
н	Н	OMe	OMe	н	Н	OEt	OEt			0
Н	OMe	Н	н	Н	0-CH2-0		Н	HNO ₂ /MeOH, Na ₂ HPO ₄ , Cu	25	p
н	OMe	Н	H	0-CH2-C		н	Br OFt	HNO ₂ /MeOH, Na ₂ HPO ₄ , Cu		p ~
H H	H H	OMe OMe	OMe OEt	H H	OMe OMe	н Н	OEt OMe			q
н	Н	OMe	OMe	н	OEt	н	OMe			q q
OMe	н	OMe	Н	0-CH2-C		н	Br			r
н	Н	OMe	н	0-CH2-C		н	Br	AmONO		\$
н	н	NO ₂	Н	OMe	н	OMe	н	HNO ₂ /H ₂ SO ₄	47	t
Н	Н	F	н	Н	Н	Н	Н	AmONO, NaH ₂ PO ₂ , Cu	67	и
Н	Н	CF3	Н	Н	Н	н	н	AmONO, NaH_2PO_2 , Cu	37	и
Н	н	н	н	н	F	н	Н	AmONO, NaH_2PO_2 , Cu	34	ų
н Н	н н	H H	н Н	H H	CF3 CF3O	H H	H H	AmONO, NaH_2PO_2 , Cu AmONO, NaH_2PO_2 , Cu	30 57	u u
н	H	Br	н	Н	CF ₃ C	н	Н	Amono, NaH_2PO_2 , Cu Amono, NaH_2PO_2 , Cu	67	u
н	н	CI	н	н	CF,	н	н	AmONO, NaH ₂ PO ₂ , Cu	61	u
н	н	ſ	н	н	ĊF,	н	н	AmONO, NaH ₂ PO ₂ , Cu	54	и
н	н	CF ₃	н	н	Br	н	Н	AmONO, NaH ₂ PO ₂ , Cu	69	и
н	Н	CF3	Н	Н	CI	н	Н	AmONO, NaH ₂ PO ₂ , Cu	52	и
н	H	CF ₃	Н	н	CF ₃	н	н	AmONO, NaH ₂ PO ₂ , Cu	42	u
н	CF ₃	н	H	н	Н	н	Н	Amono, NaH_2PO_2 , Cu	31	217
H H	H H	H H	CF, H	H	H H	H H	н Н	AmONO, NaH₂PO₂, Cu AmONO, NaH₂PO₂, Cu	6 12	217 217
Н	H	Н	H	CF3 H	Н	CF3	Н	Amono, NaH_2PO_2 , Cu Amono, NaH_2PO_2 , Cu	12	217
Br	Н	н	н	н	CF,	H H	н	AmONO, NaH_2PO_2 , Cu	36	217
н	CI	н	н	CF,	н	н	н	AmONO, NaH ₂ PO ₂ , Cu	20	217
Н	CI	Н	Н	Н	Н	CF3	Н	AmONO, NaH ₂ PO ₂ , Cu	20	217
н	CF ₃	Н	H_	н	Н	CI	Н	AmONO, NaH ₂ PO ₂ , Cu		217
н	Н	Н	CF3	н	Н	CI	н	Amono, NaH_2PO_2 , Cu	51	217
н ц	Br	Н	H	Н	CF ₃	Н	Н	AmONO, NaH_2PO_2 , Cu	51 65	217 217
H H	H Cl	Н Н	Br H	H H	CF3 CF3	н Н	н Н	AmONO, NaH₂PO₂, Cu AmONO, NaH₂PO₂, Cu	65 79	217
Н	CF ₃	Н	н	н	CF ₃	н	Н	Amono, Na H_2PO_2 , Cu	20	217
н	H H	н	CF,	н	CF,	н	н	AmONO, NaH ₂ PO ₂ , Cu	40	217
			3					- •		

н	н	Me SO₂Me	H H	H H	CF₃ CF₃	н н	н н	AmONO, NaH₂PO₂, Cu AmONO, NaH₂PO₂, Cu	40 40	217 217
н н	н Н		H	H	H H	CI	H	Amono, NaH_2PO_2 , Cu	58	217
н СI	CI	Сг _з Н	Н	Н	CF,	Н	Н	Amono, NaH ₂ PO ₂ , Cu	45	217
CI	H		н	н	CF ₃	н	н	Amono, NaH ₂ PO ₂ , Cu	37	217
Me	H	Me	н	н	CF ₃	н	Н	Amono, Na H_2PO_2 , Cu	43	217
Br	Н	Br	Н	Н	CF ₃	н	н	Amono, NaH_2PO_2 , Cu	71	217
ы	Cl	Cl	н	Н	CF ₃	н	Н	Amono, NaH_2PO_2 , Cu Amono, NaH_2PO_2 , Cu	31	217
Н	Br	Br	н	Н	CF ₃	Н	н	AmoNO, NaH ₂ PO ₂ , Cu	33	217
H	CI	н	CI	Н	CF,	н	н	AmONO, NaH ₂ PO ₂ , Cu	69	217
H	Br	H	Br	H	CF,	н	н	AmONO, NaH ₂ PO ₂ , Cu	35	217
Н	CF ₃	н	CF,	H	CI 3	н	Н	AmONO, NaH, PO, Cu	60	217
н	CF, CF,	н	CF3	н	Н	CI	н	AmoNO, NaH ₂ PO ₂ , Cu AmoNO, NaH ₂ PO ₂ , Cu	72	217
Η		Н			CF3	Н	н	Amono, NaH_2PO_2 , Cu Amono, NaH_2PO_2 , Cu	52	217
	ĊF,		CF3	H Cl	CF₃ H	CI	H		17	217
Н	н н	CF ₃	н н	H H	CI	CI	н Н	AmONO, NaH ₂ PO ₂ , Cu	45	217
H H		CF, H	н CF,	H H	CI	CI	H	AmONO, NaH ₂ PO ₂ , Cu	45 45	217
н	CF3		Br	н Н	CF ₃	Н	Н	Amono, NaH_2PO_2 , Cu	45 43	217
Н	Br H	Br OBz	Br H	n H	CF₃ OMe	н ОМе	н	AmONO, NaH_2PO_2 , Cu	45	217
	н		н	⊓ OMe	OMe	H	н			
н н	H H	OBz OMe	н	H			н Н		68	v
Н	н Н	H	Me	н Н	0−CH₂−C H	, Н	Н	AmONO/DMF Electrochem. redn of	90	w
								diazonium salt		w
н	OMe	Н	Н	Н	н	Н	Н	Electrochem. redn of diazonium salt	80	w
н	Н	OMe	н	н	Н	Н	Н	Electrochem. redn of	94	w
								diazonium salt		
н	н	Н	OMe	Н	Н	Н	Н	Electrochem. redn of diazonium salt	93	w
н	Br	н	н	н	Н	н	н	Electrochem, redn of diazonium salt	94	w
н	н	н	Br	н	н	н	Н	Electrochem. redn of diazonium salt	96	w
н	н	н	н	н	0-сн,-с)	н	$NaNO_2$, H_2SO_4 , Cu	43	x
н	н	н	н	0-CH2-C		́н	н	$NaNO_2$, H_2SO_4 , Cu	36	x
н	н	OMe	н	H	0-CH2-C		н	$NaNO_{2}, H_{2}SO_{4}, Cu$	31	У
н	Н	OMe	Н	0-CH2-C		́н	н	$NaNO_{2}, H_{2}SO_{4}, Cu$	5	y
Н	н	OMe	н	0-CH2-C		н	Br	$NaNO_2$, H_2SO_4 , Cu	32	y y
Н	Н	H	н	OMe	OMe	н	Br	2, 2 - 4,	• -	z
н	н	OMe	н	OMe	OMe	н	Br			z
н	н	H	H	Н	C ₆ H ₅	Н	н	AmONO, Cu		aa
н	Н	Н	Н	CI	OMe	OMe	CI		65	bb

^aM. Sasamoto, Chem. Pharm. Bull., **8**, 324 (1960); Chem. Abstr., **55**, 10448 (1961). ^bH. Shirai and N. Oda, *ibid.*, **10**, 31 (1962); Chem. Abstr., **58**, 3368 (1963). ^cH. Shirai and N. Oda, J. Pharm. Sci. Jpn., **76**, 1287 (1956); Chem Abstr., **51**, 9646 (1951). ^dM. Tomita, Y. Watanabe, and H. Furukawa, Yakugaku Zasshi, **81**, 942 (1961); Chem Abstr., **55**, 27393 (1961). ^eM. R. Letcher and L. R. M. Nhamo, J. Chem. Soc. Perkin Trans. 1, 1263 (1973). JR. M. Letcher and L. R. M. Nhamo, *ibid.*, 2941 (1972). ^gE. Gellert, T. R. Govindachari, M. V. Lakshmikantham, I. S. Ragadi, R. Rudzats, and N. Viswanathan, J. Chem. Soc., 1008 (1962). ^hD. M. Hall, J. E. Ladbury, M. S. Lesslie, and E. E. Turner, *ibid.*, 3475 (1956). ⁱP. Marchini and B. Belleau, Can. J. Chem., **36**, 581 (1958). ^jT. R. Govindachari, M. V. Lakshmikantham, K. Ngagajan, and B. R. Pai, *Tetrahedron*, **4**, 311 (1958). ^kT. R. Govindachari, B. R. Pai, S. Prabhakar, and T. S. Savitri, *ibid.*, 21, 2573 (1965). ⁱG. Y. Moltrasio, D. Giacopelio, and M. J. Vernengo, Aust. J. Chem., **26**, 2035 (1973). ^mC. K. Bradsher and H. Berger, J. Am. Chem. Soc., **79**, 3287 (1957). ⁿR. M. Letcher and L. R. M. Nhamo, J. Chem. Soc. C., 3070 (1971). ^oT. Ibuka, Yakugaku Zasshi, **85**, 579 (1965). Chem. Abstr., **63**, 11629 (1965). ^PH. Shirai and N. Oda, Chem. Pharm. Bull., **8**, 727 (1960); Chem. Abstr., **55**, 15441 (1961). ^qY. Watanabe and M. Matsumura, Yakugaku Zasshi, **83**, 991 (1963); Chem. Abstr., **60**, 4201 (1964). ^rM. Pailer and P. Bergthaller, Monatsh. Chem., **98**, 579 (1967). ^sM. Pailer and P. Bergthaller, *ibid.*, **97**, 484 (1966). ^TE. Hardegger, H. R. Biland, and H. Corrodi, *Helu. Chim. Acta*, **46**, 1354 (1963). ^dE. A. Nodiff, K. Tanabe, C. Seyfried, S. Matsuura, Y. Kondo, E. H. Chen, and M. P. Tyagi, J. Med. Chem., **14**, 921 (1971). ^vW. Wiegrebe, L. A. Nodiff, K. Tanabe, C. Seyfried, S. Matsuura, Y. Kondo, E. H. Chen, and M. P. Tyagi, J. Med. Chem., **14**, 921 (1971). ^vW. Wiegrebe, L. A. Nodiff, K. Tanabe, C. Seyfried, S. Matsuur

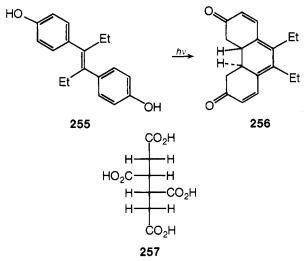
are readily available compounds.^{235–239} Cyclization occurs^{6b,240,241} from the *cis*-stilbene; a *trans*-stilbene is first photoisomerized to its geometric isomer (Scheme XI), which then cyclizes, reversibly, to a 4a,4b-dihydrophenanthrene. The latter, which is now believed to be the trans isomer **254**, then loses hydrogen to some acceptor molecule to give, in a dark reaction, the aromatic phenanthrene.^{6b,242–245} Summaries of the early work on the mechanism of this reaction have been provided by Stermitz^{6a} and by Blackburn and Timmons.^{6b} When the stilbene **255** is photolyzed,^{246–248} the product **256** is stable and can be isolated. The geometry at the 4a,4b positions has been established as trans by oxidation²⁴⁹ of **256** to *rac*-bu-

tane-1,2,3,4-tetracarboxylic acid (**257**). Controversy remains as to whether the *cis*-stilbene cyclizes to **254** from an excited singlet state or from a vibrationally excited ground state. Calculations based upon the HMO method suggest²⁵⁰ that a higher vibrational ground state is involved. It can be predicted²⁵¹ from orbital symmetry considerations that an excited singlet state of *cis*-stilbene should give *trans*-4a,4b-dihydrophenanthrene (**254**) by conrotatory closure, whereas the cis isomer of **254** should result from a "hot" ground state. Scholz et al.²⁵² used simple HMO to calculate free valence indexes in the first excited state of a large number of compounds containing the stilbene-like moiety, and it was concluded²⁵³ that if the sum of the free va-

R ₂	R3	R4	\mathbb{R}_{s}	R ₆	R_2^{\prime}	R ₃ '	${ m R_4}^{\prime}$	R,	Ra	R _a ,	Conditions ^a	% yield	Ref
			1	 _	L L	I	1	1	1	ļı	-	60-90	J +
	5 3	= =	c =	5 3	[]	2 3	= =	= =		: 3		200	
			Γ:	E :	E 1	C :		5 3	c I			00	8 7E J
	I	I	I	I	T	I	I	I,	I.	I		4	797
	I	I	I	I	I	I	I	Í	I	I		73	235
	I	I	I	I	I	I	I	I	I	Ξ	Air/Ph ₂ Se ₂	86	262
	I	I	I	I	I	I	I	I	Ξ	Η		82	241
	OMe	Ī	I	I	I	OMe	Т	I	I	I	Pentane	73	þ
	н Т	: ււ	: I	: I	I	I	Ξ	I	ī	I		76	235
	: I	. 2	: I	: I	: I	Ξ	: I	I	: I	I		76	235
	: I	ŭ ŭ	I	: I	I	: I	: I	: 1	Ξ	. I		76	235
	: 1	OMe	: 1	: 1	: 1	: 1	: 1	I	: 1	I		38	257
	: 1	OMe	: 1	: 1	: 1	: 1	: 1	: 1	: 1	: 1		42	235
	:]	Mo.	: :	: 3	: 1	:]	= =	בו	: 1	: 1		57	235
	c :		c :	c :			= =	= =	= 3			09	225
		ב.		Γ:	Γ:	C :	C 3	= :	c :	c :		8	
	I	I	I	I	II :	I:	I :	I :	Ξ:	E 1		10	552
OMe	I	I	I	I	T	T	r	I	I	T		46	235
Me	I	I	I	I	T	I	Ŧ	I	T	Ι	.	19	235
	CF,	I	I	I	I	I	I	I	I	I		89	235
СF,	I	CF,	I	I	I	I	Ŧ	I	I	T		89	235
	Ţ	OMe	I	I	I	I	OMe	I	I	Ξ			257
	I		I	I	I	I	OMe	I	I	Ξ	_	īz	257
	I	NO2	I	I	I	I	NMe_2	I	I	I		ĨZ	257
	OAc	OAc	I	I	I	OMe	I	OMe	н	I	Ξ	15	ч
	OMe	I	OMe	I	Me	I	Ŧ	I	Η	I	_	33	!
OAc	OMe	I	I	I	I	I	Ŧ	I	Т	Ξ		65	j.
	I	Pri	I	I	I	I	Pri	I	I	Τ	_	69	k
	Me	I	I	I	I	I	Т	I	I	Т	-	q.	255
	Ū	I	I	I	I	I	I	Ι	Ξ	Τ	·	q^*	255
	CF,	I	I	I	I	I	T	I	I	I	_	q	255
Me	Me	I	I	I	Me	Me,	I	I	I	I	Petrol/I ₂	50	258
Mec	Me	I	I	I	Me	Me	н	I	I	I	Petrol/I ₂		258
OMe	I	I	I	OMe ^c	I	I	I	I	I	I		06	261
OMe	I	I	I	OMe ^c	OMe	I	Т	I	I	I	_	91	261
OMe	I	OMe	I	OMe ^c	I	I	Т	I	I	I	_	85	261
OMe	I	OMe	I	OMe ^c	OMe	I	I	Ι	I	I	_	74	261
Me	I	OMe	I	OMec	I	I	I	I	I	I	_	38	261
Me	I	OMe	Ξ	OMe ^c	OMe	I	Н	I	I	Ţ	_	63	261
OMe	I	I	н	OMe ^c	I	I	CI	I	Η	Т	_	56	261
OMe	I	Т	I	OWO	-	=				-		0	
2	-		-	'JVIC'	r	Г	CO,Me	I	I	T		48	261

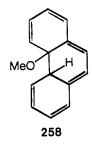
,

Synthesis of Phen	anthrenes	Chemical Reviews, 1976, Vol. 76	3, M
g 247–249 246	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	265, 270 265, 270 265, 270 265, 270 265 269 281 281 271 271 271	117
14	54 72 72 73 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75	204 56 50 50 60 <i>d</i> 3 8 1 4 1 4 23 50 50 50 50 50 50 50 50 50 50 50 50 50	3 34
HOAc/N2	Ž OH H = 2 2 2 - 2 - 2 - 2 > > > >	c	=
t t	н состиннинные е пределание обести и br>обести и пределание обести и	H NO NO NO NO NO NO NO NO NO NO NO NO NO	NIC
ц ц	со со со ме ме ме со л со л со л со л со л со л со л со	TITTIN N N N N N N N N N N N N N N N N N	c
τı	τττττττττττττττ [©] μττττ	н н н н н н н 	-


но		C C C C C C C C C C C C C C C C C C C
ΙI	IIIIÕIIIIIIIIIIIIII ŠIIII	
ΙI	rırırırırırış sırş	НННННСССО [,] Ме Со [,] Ме Со [,] Ме
τī	rıtrıtıtırıtıtıtıtı 🤹	
ΙI	ττττττττττττττττ [®] ωτττ	
НО	ала адаа адаа адаа адаа адаа адаа адаа	NITITIOTITITI M
ΤI	ž ttttorrrrrrrrrrs ž	

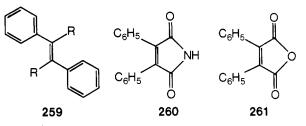
\mathbf{R}_2	N.3	R,	ĸ,	К	2.11	г,	4	5.1	ĸα	ň	Conditions	% yield	Kei
I	I	н	Т	I	H	н	н	H	Me	Me	=	50^{d}	271
н	I	I	T	I	I	I	r	I	I	ЧЧ	=	57d	271
I	I	H	I	I	I	Ξ	I	I	Ph	ЧЧ	=	20^{q}	271
I	I	Т	I	I	н	I	I	Π	CO-0-CO	00	=	43d	271
I	I	I	I	I	Ι	I	I	Ι	CN	CN	=	85d	271
I	Ш.	I	I	I	н	I	I	I	CN	CN		22^d	272
Ι	I	I	I	I	Ί	I	r	Ξ	CN	CN		60^{d}	272
I	I	I	I	I	Ξ	I	I	I	CO ₂ Me	I	CHCI ₃ /No O ₂	724	273, 276
Т	I	I	I	Ι	I	I	Т	I	coph	CO ₂ H	C,H,/O,		u
I	I	I	I	Ι	I	I	T	I	CN	OMe	a 1		277
I	I	I	I	I	I	I	I	I	CN	CN	CHCI	ЪŢ	0
T	I	I	I	I	I	I	I	I	OC-NH-CO	-00	EtoH	4^{d}	0
Me	I	Me	OMe	I	Me	I	Me	OMe	I	I	12	20^{e}	256
I	OAc	I	I	I	I	OMe	I	OMe	I	I	EtoH	33	d
Me	н	Me	OMe	I	Me	I	Me	OMe	I	I	1 ₂ /0 ₂		q
I	OMe	I	OMe	I	I	OAc	OMe	I	I	I	Ξ	35-40	.
I	OMe	OMe	OMe	I	I	OAc	OMe	I	I	I	Ξ	35-40	r
с,н,	I	I	I	I	I	I	н	П	H	Ξ	c-C ₆ H ₁₂ /C ₆ H ₆ /	64	s
											$ _2$ ·		
I	I	C ₆ H ₅	I	I	I	I	Ξ	I	Ι	Ξ	12	57	s
н	С _к Н,	T	I	I	I	I	I	I	τ	Ξ	1 2	86	S
T	OMe	I	OMe	I	I	НО	I	I	I	I			t
I	OMe	Н	OMe	I	I	OMe	OBz	I	т	I			п
I	I	ß	I	I	I	I	I	I	CO_2Me	I	12/02		n
OMe	Me	CO, Me	I	I	OMe	I	I	I	Т	I	_		m
H	I	CHO	I	I	I	I	СНО	I	т	I	C,H,	40	х, у
Ξ	OMe	I	OMe	I	I	но	OMe	I	Т	I			N
õ	Ι	a	I	۵	۵	I	۵	Ξ	Ι	Ι	_	39	aa
õ	I	۵	I	۵	I	I	I	I	I	I		27	aa
I	۵	I	۵	Ĩ	I	۵	I	۵	I	I	_	25	aa
I	۵	I	۵	I	I	I	I	I	Ξ	I	_	33	aa
Ω	۵	۵	۵	۵	I	I	Ť	I	Т	I		48	aa
I	Me	I	Me	I	I	I	CO ₂ Me	Ξ	Т	I	C ₆ H ₆ /I ₂	68	qq

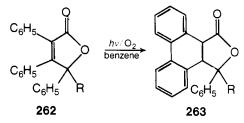
cyclization. ^d As 9,10-dihydrophenanthrene. ^e As 1,3,6,8-tetrametnyt-4,5-dimetnyt-4,5-dimetryty-1, Kalvoda, and K. Schnaffner, *Helv. Chim. Acta*, 43, 1322 (1960). ⁿ R. M. Letcher, L. K. M. Nivanuo, and M. V. C. Lindquist, and M. L. Savitz, *J. Am. Chem. Soc.*, **84**, 4361 (1962). ^e M. V. Sargent and D. O'N. Smith, *J. Chem. Soc.* C, 329 (1970). ^jH. D. Becker, *J. Org. Chem.*, 34, 2026 (1969). ⁿG. Rio and J. C. Hardy, Sargent, *Just. Lett.*, K. M. Nivanuo, *J. Am. Chem. Soc.*, **91**, 6122 (1969). ⁿG. Rio and J. C. Hardy, Sargent, *Just. L. Chem. Soc. D.*, 121 (1970). ^m J. H. Eboyer and R. Selvarajan, *J. Am. Chem.*, 34, 2026 (1999). ⁿG. Rio and J. C. Hardy, Sargent, *Just. J. Chem.*, **24**, 1721 (1971). ^dR. B. Herbert and C. J. Timmons, *J. Am. Chem. Soc. D.*, 121 (1970). ^m J. H. Eboyer and R. Selvarajan, *J. Am. Chem.*, **33**, 2056 (1969). ⁿG. Rio and J. C. Hardy, Sangent, *Just. J. Chem.*, **39**, 1073, ^oM. S. Sargent and C. J. Timmons, *J. Am. Chem. Soc. B*, 1216 (1963). ^pR. M. Letcher and L. R. M. Namo, *J. Chem.*, **39**, 1980 (1974). ^rR. M. Letcher and L. R. M. Namo, *J. Chem.*, **39**, 1973, ^rGM. S. Newman and H. M. Crimo, *J. Org. Chem.*, **39**, 1034 (1974). ^rR. M. Letcher and L. R. M. Namo, *J. Chem.*, **39**, 3429 (1974). ^rR. M. Letcher and L. R. M. Namo, *J. Chem.*, **39**, 3429 (1974). ^rR. M. Letcher and L. R. M. Namo, *J. Chem.*, **39**, 3429 (1974). ^rR. M. Letcher and L. R. M. Namo, *J. Chem.*, **39**, 3429 (1974). ^rR. M. Letcher and L. R. M. Namo, *J. Chem.*, **39**, 3429 (1974). ^rR. M. Letcher and L. R. M. Namo, *J. Chem.*, **39**, 3429 (1974). ^rR. M. Letcher and L. R. M. Namo, *J. Chem.*, **30**, 3429 (1974). ^rR. M. Letcher, M. S. Chinda, J. C. W. Su, *Org. Prep. Proced. Int.*, **6**, 185 (1974). ^wL. M. Cresp, R. G. F. Giles, and M. V. Sargenti, *Chem.*, **36**, 734 (1974). ^yJ. Y. Wong, C. Manning, and C. C. Leznoff, *Angew. Chem.*, **16**, 166 (1974). ^rR. Letcher, **16**, 1000, ^mJ. Lin, R. E. Harmon, W. Pierantoni, and J. C. W. Su, *Org. Prep. Proced. Int.*, **6**, 185 (19


SCHEME XI $\begin{array}{c} & & \\$

lence indexes of the terminal atoms concerned in the photocyclization exceeds a certain value, cyclization to the phenanthrene will occur. In those cases where cyclization may proceed in more than one way, it was possible to predict the orientation by these calculations. It has been pointed out,²⁵⁴ however, that this is not the only factor affecting the ability of a given stilbene derivative to undergo cyclization.

The general procedure for effecting photocyclization involves²³⁵ the irradiation of a solution of the stilbene (0.01 mol) in cyclohexane (1 I.) containing iodine (0.0005 mol) in an atmosphere of air, using a 100-W medium-pressure mercury lamp. At higher stilbene concentrations, side reactions occur,²³⁵ mainly dimerization to tetraarylcyclobutanes. In the absence of air yields of phenanthrenes are reduced, and in the absence of both air and iodine very little phenanthrene is formed.


Phenanthrenes have been obtained (Table XVI) in good yields from stilbenes substituted in the α , ortho, and/or para positions with methyl, methoxyl, halogen, cyano, phenyl, carboxyl, alkoxycarbonyl, and trifluoromethyl groups. Meta-substituted stilbenes may give rise to mixtures of 2- and 4-substituted phenanthrenes which are not always easy to separate. It has been found²⁵⁵ that these two modes of cyclization can occur at comparable rates despite the steric hindrance to the formation of the 4-substituted phenanthrene. Yields of the highly sterically hindered 4,5-disubstituted phenanthrenes are usually low under the normal conditions.²⁵⁶ The cyclization fails if the stilbene carries acetyl,²³⁵ dimethylamino,^{235,257} or nitro^{235,257} substituents. The carbon-iodine bond is very easily broken photochemically so that this substituent is frequently lost from any position in the stilbene. Loss of methyl, chloro, bromo, methoxyl, or carboxyl groups from the ortho positions, especially of poly-ortho-substituted stilbenes, has been observed. 256,258-261 Even with o-methoxystilbene, photolysis under nitrogen results²⁶¹ in a 58% yield of phenanthrene itself; presumably the intermediate is **258**, which readily loses methanol. When a choice exists between methyl and methoxyl loss, only the latter was observed.²⁶¹

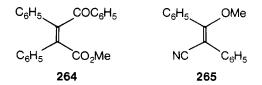
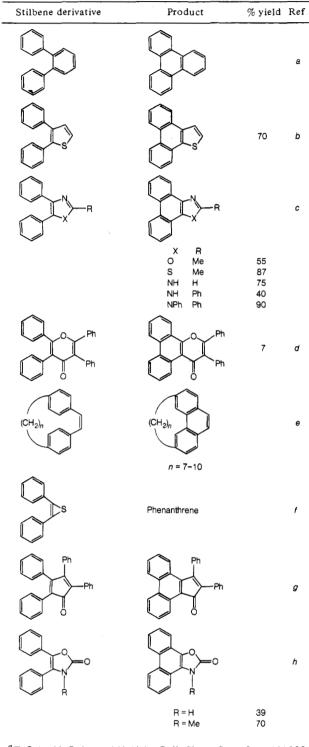

Recent modifications to the photolysis reaction have included the use of selenium radicals, generated from diphenyl selenide, as the dehydrogenating agent.²⁶² Good yields of highly sterically hindered phenanthrenes have been achieved in this way. The presence of cupric ions was found^{263,264} to increase yields of phenanthrenes from α, α^{1} -disubstituted stilbenes, but to have little or no effect upon stilbenes with one or no α substituents.

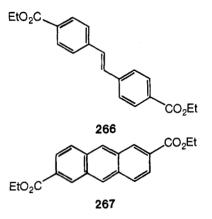
An important modification of the original photocyclization reaction, which was first described by Kupchan and Wormser,²⁶⁵ involves the photolysis of *o*-iodostilbene.²⁶⁶ The C–I bond is broken during the course of the reaction, which proceeds via free-radical intermediates rather than through the formation of **254**. A number of compounds has been studied^{208,209,265,267–270} by this method which is particularly effective for the preparation of nitrophenanthrenes.^{265,271}

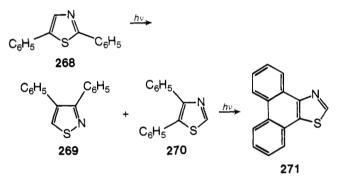
Irradiation of **259** (R = CN), **260**, and **261** in solution exposed to air gave^{272,273} mainly the expected phenanthrenes, but small amounts of the corresponding 9,10-disubstituted-9,10-dihy-drophenanthrenes were also produced. However, when the same

compounds were irradiated in degassed ethanol, only the 9,10-dihydrophenanthrenes were formed. Subsequent work showed that the 9,10-dihydrophenanthrenes are the products only when *two* strongly electron-withdrawing groups are present at the α , α^1 positions in the stilbene. The reaction, which is of some synthetic value, probably involves a radical reaction, and does not proceed via the 4a,4b-dihydrophenanthrene.²⁷⁴ However, evidence has been presented^{275,272} for ionic rather than radical behavior when diphenylfumarodinitrile (**259**, R = CN) is photocyclized. The irradiation of **262** is reported²⁷⁶ to give the

9,10-dihydrophenanthrene **263** when R = OMe or OH, but the corresponding phenanthrene is isolated when R = H or OCOCH₃. The photolysis of **264** is also reported²⁷⁶ to yield the aromatic

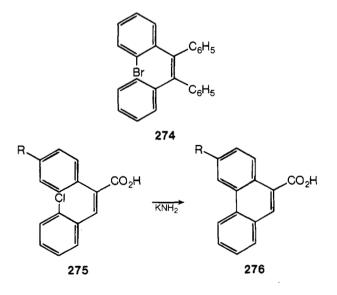

TABLE XVII. Cyclization of Substituted Stilbenes


^dT. Sato, Y. Goto, and K. Hata, Bull. Chem. Soc., Jpn., 40, 1994 (1967); Chem. Abstr., 67, 108 482 (1967). ^bH. Wynberg, H. van Driel, R. M. Kellogg, and J. Butler, J. Am. Chem. Soc., 89, 3487 (1967). ^cJ. L. Cooper and H. H. Wasserman, Chem. Commun., 200 (1969). ^dN. Ishibe, M. Odani, and M. Sunami, *ibid.*, 1034 (1971). ^eS. E. Potter and I. O. Sutherland, *ibid.*, 520 (1973). JT. Sato, Y. Goto, T. Tohyama, S. Hayashi, and K. Hata, Bull. Chem. Soc. Jpn., 40, 2975 (1967); Chem. Abstr., 68, 77 447 (1968). ^gE. J. McNelis, U.S. Patent 3,123,649 (1964); Chem. Abstr., 60, 144545 (1964). ^hA. S. Dey and J. L. Neumeyer, J. Med. Chem., 17, 1095 (1974).

phenanthrene; photocyclization of **265** gives²⁷⁷ 9-cyano-10methoxyphenanthrene in 65% yield. When **266** was irradiated,²⁷⁸ the expected phenanthrene was accompanied by the anthracene derivative **267**; this was thought to arise from the triplet state of **266**.

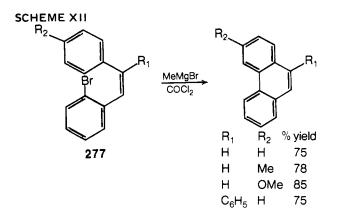
Although this review is concerned essentially with simple

stilbene derivatives, the compounds in Table XVII represent potentially interesting extensions to the photocyclization reaction. This extension does not always give unambiguous results; rearrangement of the heterocyclic precursor may occur before cyclization, e.g.,²⁷⁹ 268 \rightarrow 269 + 270 \rightarrow 271.

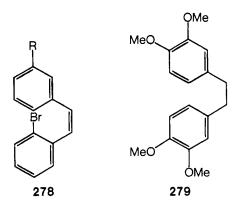


When diphenylacetylene is irradiated in ethanol,²⁸⁰ a 10% yield of phenanthrene is realized. It was later found²⁸¹ that in methanol as solvent the major product is **272**, whereas in acetic acid solution the products are **273** and 9-acetoxyphenanthrene.

C₆H₅CH=CC₆H₅ R 272, R = OMe 273, R = OAc


5. Miscellaneous

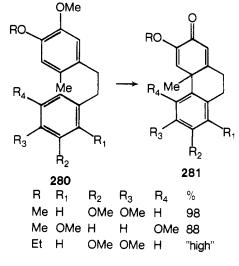
Treatment of **274** with butyllithium, followed by carbon dioxide, gives the expected acid, but with dimethyl carbonate a 25% yield of 9,10-diphenyl-9,10-dihydrophenanthrene can be isolated.²⁸² A very interesting and potentially important method is due to

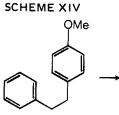


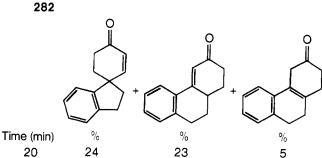
Kessar et al.,²⁶³ in which chloro acids of the type **275** (R = H or OMe), undergo cyclodehydrohalogenation when reacted with potassium amide in liquid ammonia. The phenanthrene-9-carboxylic acids **276** (R = H or OMe) are formed in 46 and 55% yield, respectively. The reaction was originally thought to involve a benzyne intermediate, but this is now²⁸⁴ known not to be so. The full scope of the reaction is not yet known.

When stilbenes such as **277** are treated^{285,286} with methylmagnesium bromide and cobalt chloride, high yields of phenanthrenes can be obtained (Scheme XII). It is believed that

homolytic cleavage of the carbon-halogen bond occurs to give a radical which then reacts in an intramolecular substitution reaction with the second aryl nucleus. When cyclization can occur in two possible ways, for example, from **278**, a mixture of the 2- and 4-substituted phenanthrenes results.^{287,288} Treatment of tetraphenylethylene with chromyl chloride gives²⁸⁹ 9,10-diphenyl-9,10-dihydrophenanthrene in high yield. Tetraphenylethylene can²⁹⁰ be oxidized electrolytically to 9,10-diphenylphenanthrene. The diarylethane **279** has been cyclized

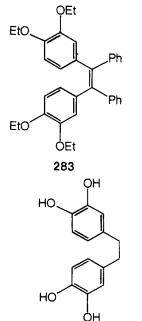



electrolytically^{291,292} to the 9,10-dihydrophenanthrene in almost quantitative yield, and this type of reaction has been extended by Stermitz et al. to give **281** from **280** (Scheme XIII). When the diarylethane **282** is allowed to react with a HF/SbF₅ mixture at 0°, three products are formed²⁹⁴ in ratios that vary with time (Scheme XIV).


An unexpected cyclization to **284** occurred²⁹⁵ when **283** was allowed to react with potassium permanganate in acetic acid. When **279** is treated with tris(*p*-bromophenyl)ammoniumyl hexachloroantiminate ((*p*-BrC₆H₄)₃N⁺SbCl₆⁻⁻), 2,3,6,7-tetramethoxyphenanthrene is formed via a cation radical.²⁹⁶ Phenol oxidation techniques have been applied²⁹⁷ with the treatment of **285** with ferric chloride or ceric ammonium sulfate, but the yield of the 9,10-dihydrophenanthrene was not given. An interesting phenanthrene ring formation occurs (70% yield) when **286** is treated^{298,299} with iodine and mercuric acetate, followed by heating to 230–290° with copper bronze.

9,10-Diphenylphenanthrene is formed³⁰⁰ when **287** is treated with aluminum trichloride.

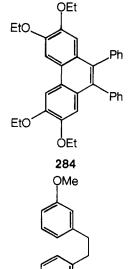
SCHEME XIII



66

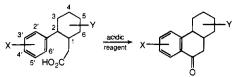
56

20 70 120



285

4


0

ÒМе

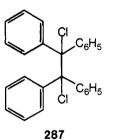
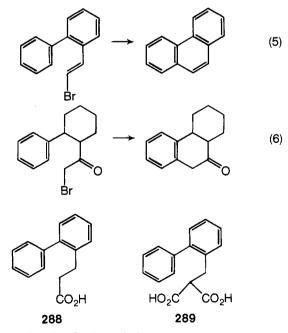

286

TABLE XVIII. Cyclization of 2-Phenylcyclohexylacetic Acid Derivatives

	2-Arylcyclohexylacetic aci	ds			
	x	Y	Acidic reagent	% yield	Ref
trans		Н	H ₂ SO ₄	65-79	306-309, 311
			HĒ	88-92	211, 310, 312
trans	н	4-Me	PPA	82	318
trans	3'-Me	н	HF	85	с
trans	3'-OMe	н	HF	87	с
trans	2'-Me	4-Me	PPA	8	318
trans	4'-Me	4-Me	PPA	25	318
trans	4'-CI	н	РРА —		317
cis	4'-Cl	н	PPA		317
trans	2′,5′-(Me)₂	н	HF	90	d
cis	2',5'-(Me),	н	HF		314
	2',5'-(Me) ₂	4-Me			е
trans	2',3'-(OMe) ₂	н	ZnCl ₂ /Ac ₂ O/AcOH	75	309
trans	2',3'-(OMe) ₂	3-0H	ZnCl ₂ /Ac ₂ O/AcOH	35	309
trans	Н	3-Oxo	H₂SO₄	40	f
trans	н	5-Oxo	H₂SO₄	60	303
	н	6-Oxo	PPA	100	316
			HF		g
trans	2'-Me	3-Oxo	HF	100	304
trans	3'-Me	3-Oxo	HF	89	С
trans	3'-OMe	3-Oxo	HF	98 crude	c, h
trans	2',5'-(Me) ₂	3-Oxo	HF	82 ^b	d
trans	2',5'-(OMe) ₂	3-Oxo	HF	86	d
trans	2',3'-(OMe) ₂	3-0xo ^a	ZnCl/Ac₂O/AcOH	65	309

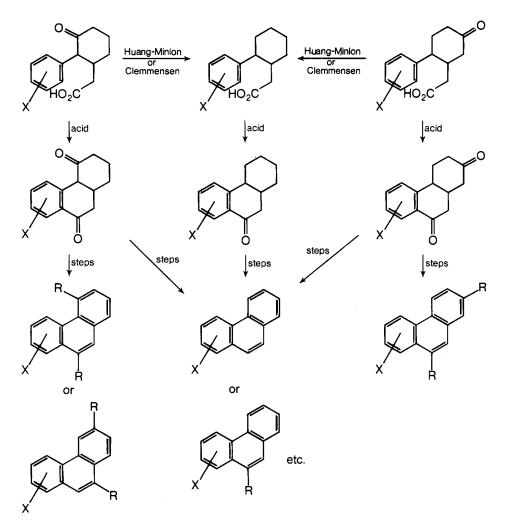
^{*a*} As its ethylene glycol ketal. ^{*b*} Accompanied by a small % of the unexpected *cis* isomer, shown to be the thermodynamically more stable in base-catalyzed equilibrium, probably due to base-catalyzed isomerization during workup. ^{*c*}S. Bien and M. Boazi, *J. Chem. Soc.*, 1727 (1959). ^{*a*}S. Bien, L. Cohen, and K. Scheinmann, *ibid.*, 1495 (1965). ^{*e*}D. N. Chatterjee and S. P. Bhattacharjee, *Indian J. Chem.*, 12, 958 (1974). ^{*f*}C. F. Koelsch, *J. Am. Chem. Soc.*, 73, 2951 (1951). ^{*g*}L. E. Coles, V. S. Gandhi, and D. W. Mathieson, *J. Pharm. Pharmacol.*, 12, 518 (1960). ^{*h*}S. Bien and D. Ginsburg, *J. Chem. Soc.*, 2065 (1963).



E. Cyclization of Biphenyloid Compounds

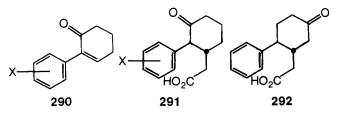
Biphenyls and phenylcyclohexanes, suitably substituted in the 2 position, are converted by a variety of alkylation, acylation and condensation procedures into phenanthrene derivatives. A number of 2,2'-disubstituted biphenyls may be cyclized, mainly by reductive methods or the Wurtz reaction, leading to the formation of phenanthrenes. These methods provide valuable synthetic routes to a number of phenanthrenes, especially those containing 9- and 10-substituents.

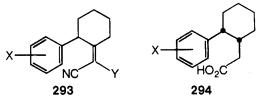
1. Intramolecular Cycloalkylation


Few examples of this type have been examined. However, β -bromo-2-phenylstyrene is cyclized (see eq 5) by treatment³⁰¹ with either zinc chloride (73% yield) or aluminum trichloride (39% yield) and bromomethyl 2-phenylcyclohexyl ketone by aluminum trichloride²¹¹ (11% yield, see eq 6). Radical-induced cycloalkylations leading to phenanthrenes are also known. Thus, **288** and **289** give 9,10-dihydrophenanthrene and phenanthrene respectively, when oxidized³⁰² either electrolytically or with lead tetraacetate.

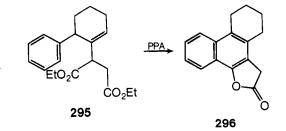
2. Intramolecular Cycloacylation

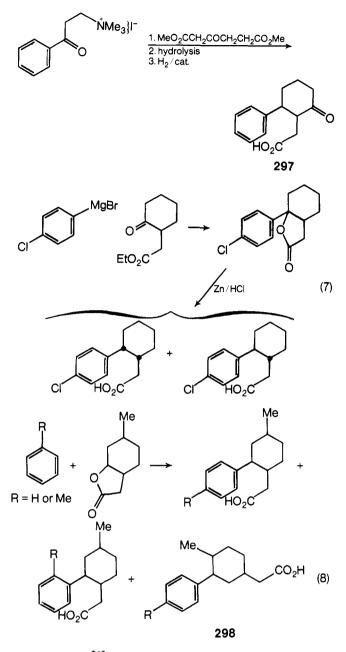
The cyclization of 2-arylcyclohexylacetic acids in the presence of acidic reagents to give 1,2,3,4,4a,9,10,10a-octahydro-9-phenanthrones often occurs in high yield (>80%). These phenanthrones have been aromatized by standard procedures, when additional alkyl or aryl substituents may be introduced by Grignard reactions of the carbonyl group. The 2-arylcyclohex-

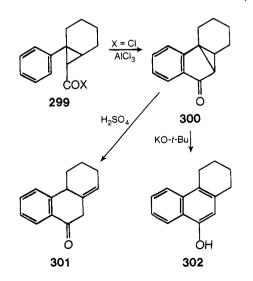

SCHEME XV


ylacetic acids can be prepared by reduction of the corresponding 2-aryl-3-oxo- or 6-aryl-3-oxocyclohexylacetic acids. These compounds, when cyclized before reduction, provide further sites for the introduction of substituents by the Grignard reaction³⁰³ or by base-catalyzed alkylation.³⁰⁴ This method provides an extremely valuable route to a wide range of phenanthrenes, which is illustrated in Scheme XV. Terpenoids have been obtained³⁰⁵ in this manner.

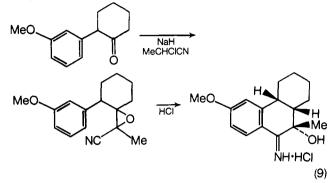
The cyclization of the parent compound, 2-phenylcyclohexylacetic acid, has been reported by several authors,^{211,306-312} the confusion in the earlier literature being settled by Gutsche and Johnson.²¹¹ The ring closure has been catalyzed by a variety of acidic reagents and applied to a number of 2-arylcyclohexyland 2-aryloxocyclohexylacetic acids (see Table XVIII).


The starting materials for this route are readily available. The commonest preparation utilizes a 2-arylcyclohex-2-enone,³¹³ **290**, which undergoes Michael addition with a malonic or a cy-

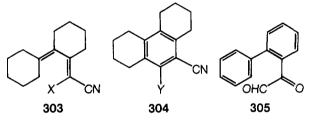

anoacetic ester. The product on hydrolysis and decarboxylation was found³⁰⁹ to yield a *trans*-2-aryl-3-oxocyclohexylacetic acid, **291**. 4-Phenylcyclohex-3-enone has similarly been converted³⁰³ into *trans*-6-phenyl-3-oxocyclohexylacetic acid (**292**). A variation involves condensation of cyanoacetic ester³⁰⁸ or malononi-trile³¹⁴ with 2-arylcyclohexanones. The products **293** (Y = CO₂R


or CN) catalytically reduced, followed by hydrolysis and decarboxylation, yield *cis*-2-arylcyclohexylacetic acids (**294**). A similar process involves the Stobbe condensation of 2-phenylcyclohexanone with diethyl succinate; the product **295** has been cyclized³¹⁵ to **296** in 80% yield. A different approach was used

by Nasipuri and Roy,³¹⁶ in which β -dimethylaminopropiophenone methiodide was condensed with the potassium derivative of dimethyl 3-oxoadipate, followed by hydrolysis and reduction to yield **297** of unspecified configuration. 2-Arylcyclohexylacetic acids have also been prepared by the action³¹⁷ of a Grignard reagent with ethyl 2-oxocyclohexylacetate (see eq 7) and by an abnormal Friedel–Crafts reaction³¹⁸ of 2-hydroxy-4-methylcyclohexylacetic acid lactone (see eq 8), in which **298** was an unexpected by-product.

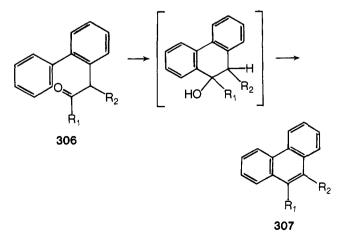


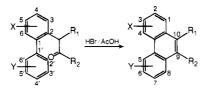
Besinet et al.³¹⁹ have described a process, which is related to the cyclization of 2-arylcyclohexylacetic acids. 1-Phenylcyclohexene was converted into **299** (X = OEt) by treatment with ethyl diazoacetate, and the derived acid chloride **299** (X = CI)



was cyclized with aluminum trichloride. The product **300** was rearranged, in unstated yield, to **301** and **302** by the action of acid or base, respectively. The method would appear to be of little general synthetic utility.

The cyclization³²⁰ of 2-arylcyclohexylacetonitriles is also known for one example (see eq 9). The related dinitrile **303** (X


= CN) gives a quantitative yield of 9-amino-10-cyano-1,2,3,4,5,6,7,8-octahydrophenanthrene (**304**, Y = NH₂) by treatment³²¹ with acids, while **303** (X = CO₂Et) gives the corresponding 9-hydroxy compound **304** (Y = OH).

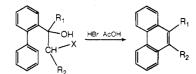

Intramolecular cycloacylation reactions of the fully aromatic biphenyls are of little importance in phenanthrene synthesis. However, ethyl 2-biphenylylacetate³²² and 2-biphenylylacetonitrile³²³ have been cyclized by sulfuric acid treatment, to yield 9-hydroxy- and 9-aminophenanthrene, respectively. The action³²⁴ of a zinc chloride, acetic anhydride, and acetic acid mixture on 2-biphenylylacetic acid produces 9-acetoxyphenanthrene in 55% yield. Selenium dioxide converts³²⁵ 2-acetylbiphenyl into 9, 10-phenanthraquinone, either directly in dioxane (15% yield) or indirectly in ethanol via **305**, which was cyclized by treatment with aluminum trichloride/anisole (overall yield 11%). An attempt to extend this procedure to 5-chloro-2-acetylbiphenyl gave³²⁵ only a 0.4% yield of 3-chloro-9, 10-phenanthraquinone.

3. Intramolecular Condensation

The cyclization of 2-biphenylylaldehydes, e.g., **306** ($R_1 = H$, $R_2 = Me$) in the presence of acid was found³²⁶ to be accompa-

TABLE XIX. Aromatic Cyclodehydration^a of 2-Biphenylylmethylcarbonyl Compounds

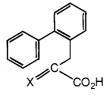
	S	tarting material			Phenan	threne			
R_1	R ₂	x	Y	R ₁	R ₂	х	Y	% yield	Ref
Н	Н	Н	Н	Н	Н	Н	Н	78	326
н	Me	Н	н	Н	Me	Н	Н	80	326
н	<i>i</i> -Bu	Н	н	Н	<i>i</i> -Bu	н	н	35	326
н	4-MeOPh ^b	Н	н	Н	4-HOPh	н	н	45	i
Me	Н	н	н	Me	н	Н	Н	93	326
Me	Me	н	н	Me	Me	н	Н	87	328
Me	Et	н	н	Me	Et	Н	Н	86	328
Me	<i>n</i> -Pr	Н	н	Me	<i>n</i> -Pr	Н	н	100	328
Me	i-Pr ^c	Н	Н	Me	н	Н	н	71	328
Me	<i>i</i> -Pr ^c	5-0Me ^b	н	Me	н	3-0H	н	72	328
Me	n-Bu	Н	н	Me	n-Bu	н	н	92	328
Me	Ph	4-Br	4′-Br	Me	Ph	2-Br	7-Br	84^d	332
Me	4-MeOPh ^b	Н	н	Me	4-HOPh	н	н	82	i
Me	он	н	н	Me	ОН	н	н	75	326
Et	н	н	н	Et	н	Н	Н	100	326
Et	Et	н	н	Et	Et	н	Н	91	328
Et	<i>i</i> -Pr ^c	Н	н	Et	H	Н	н	25	328
Et	4-MeOPh ^b	Н	н	Et	4-HOPh	н	Н	82	j
Et	4-MeOPh ^b	5-OMe ^b	Н	Et	4-HOPh	3-0H	Н	51	, k
Et	4-MeOPh	4-OMe	4′-OMe	Et	4-MeOPh	2-OMe	7-OMe	66 ^e	332
<i>n</i> -Pr	Me	Н	H	<i>n</i> -Pr	Me	H	H	100	328
<i>n</i> -Pr	<i>n</i> -Pr	Н	Н	<i>n</i> -Pr	n-Pr	H	Н	89	328
<i>i</i> -Pr ^c	Me	Н	Н	H	Me	Н	Н	56	328
<i>i</i> -Pr ^c	Et	Н	Н	Н	Et	H	H	52	328
n-C,H,,	<i>n</i> -C,H ₁ ,	Н	H	<i>n</i> -C ₀ H ₁₀	n-C,H1,	Н	H	70	328
<i>n</i> -C ₀ H ₁₀	$n C_{14}H_{29}$	Н	Н	<i>n</i> -C ₉ H ₁ ,	$n - C_{14}H_{29}$	н	Н	34	329
$n C_{14}H_{29}$	$n C_{14} H_{29}$ $n C_{14} H_{29}$	Н	Н	$n - C_{14}H_{29}$	$n - C_{14} + C_{29}$ $n - C_{14} + C_{29}$	Н	Н	23	329
CO ₂ Et ^c	Me Me	3,4-(NO ₂) ₂	н	(H	Me	1,3-(NO ₂) ₂	Н	23 54	325
002	NIC .	$3, + (1 + 0_2)_2$		{CO ₂ Et	Me	$1,3-(NO_2)_2$ $1,3-(NO_2)_2$	Н	60 ^d	331
CO₂Et ^c	CO ₂ Et	н	н	(EO ₂ EC	CO,H	$H^{1,3-(NO_2)_2}$	Н	60∝ 67	l
			TT -	2	CO₂⊓ D–CO	Н	Н	63 <i>d</i>	, 324
CO₂Et	CO ₂ Et	н	3'-OMe		0-CO	Н			324
			3-Olvie		0-00 0-00		6-OMe	73 <i>d,f</i>	330
CO,Etc	CO ₂ Et	н	4'-OMe			Н	8-OMe∫	26	220
	CO2EL	Π	4 -Olvie	{H co i	CO₂H	Н	7-OMe	36	330
CNg	Me	н	н	(CN	0-00	Н	7-OMe	16	330
CINS	vie	п	н		Me	Н	Н	56	326
				{CONH ₂	Me	Н	Н	22 ^h	326
CNIG	÷.			(H	Me	H	Н	22 ^h	326
CNg	Et	н	Н	{CONH ₂	Et	Ĥ	Н	24	326
ONIG	DI.			(H	Et	Н	н	73 ^h	326
CNg	Ph	Н	Н	{CN	Ph	Н	Н	27ď	т
					Ph	Н		20	
				lн			Н	29	m
CNg	4-MeOPh ^b	н	н	(H {CONH ₂ {H	4-MeOPh 4-HOPh	H H	п Н Н	29 23 ^d 96	m m m


^{*a*} The acidic reagent is HBr/AcOH unless otherwise stated. ^{*b*} Demethylated during cyclodehydration. ^{*c*} This group is eliminated during cyclodehydration. ^{*a*} Acidic reagent cold concentrated sulfuric acid. ^{*e*} Acidic reagent PPA. *J* Mixture of isomers difficult to separate. ^{*s*} May be modified during cyclodehydration. ^{*n*} Reaction prolonged. ^{*i*} F. P. Palopoli, V. J. Feil, D. E. Holtkamp, and A. Richardson Jr., *J. Med. Chem.*, **17**, 1333 (1974), *J* C. K. Bradsher and W. J. Jackson Jr., *J. Am. Chem. Soc.*, **73**, 3235 (1951). ^{*k*} C. K. Bradsher and W. J. Jackson Jr., *ibid.*, **74**, 4880 (1952). ^{*i*} T. A. Geissmann and R. W. Tess, *ibid.*, **62**, 514 (1940). ^{*m*} C. K. Bradsher and R. S. Kittila, *ibid.*, **72**, 277 (1950).

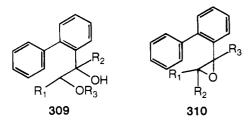
nied by dehydration to phenanthrenes, e.g., **307** ($R_1 = H$, $R_2 = Me$). This type of reaction has been termed³²⁷ an "aromatic cyclodehydration". The reaction occurs under the influence of many acidic reagents, e.g., PPA, 85% sulfuric acid, or hydrobromic acid–acetic acid mixture. The reaction is particularly valuable because it gives rise to phenanthrenes directly, in good yields, under conditions much milder than those used for dehydrogenation. The biphenylyl starting materials may be synthesized in good yields by well-established methods,^{328–334} so aromatic cyclodehydration provides an attractive route to phenanthrenes, especially those with 9, 10-substituents. The method

has been the subject of earlier review,⁷ the most recent^{7b} in 1974, but in a little known journal. The discussion will therefore be limited, although the majority of the experimental data will be summarized in the form of tables.

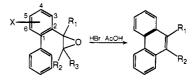
The cyclization of the aldehydes and ketones of the type **306** has been widely studied and good yields of phenanthrenes obtained, where R_1 and $R_2 = aryl$, alkyl, CO_2R , CN. Phenanthrenes **307**, where R_1 or $R_2 = i$ -Pr, cannot be obtained by this method, the *i*-Pr group being eliminated³²⁸ during cyclodehydration. Nevertheless, phenanthrenes bearing large substituents at the 9 and 10 positions have been formed,³²⁹ e.g., **307** ($R_1 = R_2 =$


TABLE XX. Aromatic Cyclodehydration of 2-Biphenylylethene Glycols and Their Ethers and Related Compounds

			%	
R ₁	R ₂	Х	yield	Ref
Ph	Ph	ОН	29 <i>a</i>	d
			low ^b	е
4-MeOPh	4-MeOPh	он	28 ^{a, c}	d
н	Н	OMe	46	327
Me	Н	OMe	50	f
Et	Н	OMe	54	g
<i>n</i> -Pr	Н	OMe	51	g
<i>n-</i> Bu	н	OMe	40	g
PhCH ₂	Н	OMe	70	g
Ph	н	OMe		h
4-MePh	н	OMe		h
Me	н	OPh	32 <i>ª</i>	f
Ph	н	OPh	84	h
Ph	Me	OPh	72 <i>ª</i>	i
Ph	Et	OPh	70	i
Ph	Ph	OPh	62 ^a	i
Me	н	O-2-naph	23	f
Me	Н	NEt ₂	10	f
Me	Н	CI	<1	f


^aThese yields are overall yields; the intermediate glycol derivative was not isolated. ^b 1₂/AcOH acidic reagent in this case. ^cThe product was 9,10-bis(4-hydroxyphenyl)phenanthrene. ^dC. K. Bradsher and L J. Wissow, J. Am. Chem. Soc., **65**, 2304 (1943). ^eP. T. Lansbury, J. R. Rogozinski, and F. L. Coblentz, J. Org. Chem., **26**, 2277 (1961). ^JC. K. Bradsher and R. W. H. Tess, J. Am. Chem. Soc., **61**, 2184 (1939). ^gC. K. Bradsher and S. T. Amore, *ibid.*, **63**, 493 (1941). ^hC. K. Bradsher and A. K. Schneider, *ibid.*, **60**, 2960 (1938). ⁱC. K. Bradsher and R. Rosher, *ibid.*, **61**, 1524 (1939).

n-C₉H₁₉ and n-C₁₄H₂₉). The results of this type of cyclization are summarized in Table XIX. Treatment of the related **308** (X = NOH or S) with acids gives³³⁵ 9-phenanthrenecarboxylic acid.


308

Compounds, which may undergo acid-catalyzed rearrangement of the pinacol-pinacolone type to give **306** or its derivatives, have also been investigated. Thus 2-biphenylylglycols **309** ($R_3 = H$), their ethers **309** ($R_3 = alkyl$), or aryl and olefin oxides **310** all undergo aromatic cyclodehydration to yield phenanthrenes. In the case of **310**, when R_1 and R_2 are both alkyl, elimination of an alkyl group is observed.³³⁴ The results of these reactions are summarized in Tables XX and XXI.

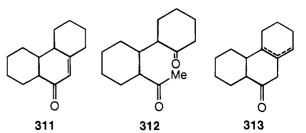
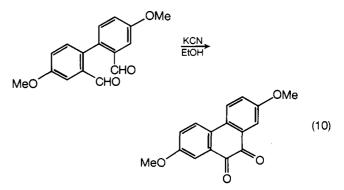
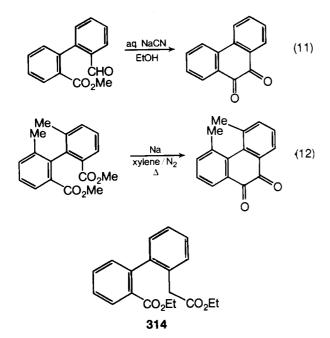
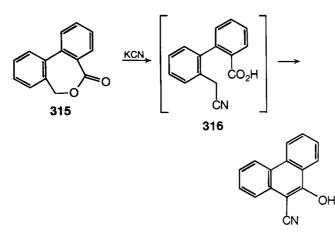

Condensation reactions leading to perhydrophenanthrenes have been described. Thus 1-acetylcyclohexene condenses³³⁶ with cyclohexanone in the presence of sodamide yielding **311**,

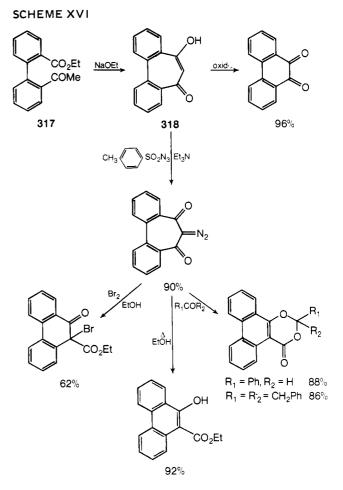
TABLE XXI. Aromatic Cyclodehydrations of 2-Biphenylylethene Oxides

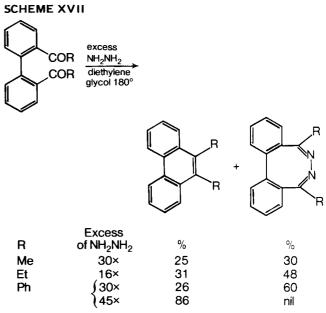

R ₁	R ₂	R ₃	x	% yield	Ref
н	Н	Н	н	2	327
Н	Et	н	Н	43	b
Н	<i>n-</i> Pr	н	Н	66	b
Н	<i>i</i> -Pr	н	н	69	b
н	<i>n</i> -Bu	н	Н	34	b
Н	<i>n</i> -C₅H ₁₁	н	н	53	b
Me	Н	н	н	40	с
Me	Me	н	Н	39	d
Me	Me	Me	н	8	334
Et	Me	н	Н	54	с
<i>n</i> -Pr	Et	н	Н	44	с
<i>n</i> -Bu	<i>n</i> -Pr	Н	Н	67	с
<i>i-</i> Bu	<i>i-</i> Pr	н	Н	а	328
<i>n</i> -C ₅ H ₁₁	Н	Н	H	31	d
Ph	Me	Н	4,5-(Me) ₂	32	333
Ph	Me	Me	н	56	334
Ph	Et	н	4,5-(Me) ₂	44	333
Ph	Et	Et	Н	60	334
Ph	<i>n</i> -Pr	н	Н	64	d
Ph	$n - C_{10}H_{21}$	Н	н	39	d


^d Product was 9-isobutylphenanthrene, *i*-Pr eliminated during cyclodehydration. ^bC. K. Bradsher and S. T. Amore, *J. Am. Chem. Soc.*, **63**, 493 (1941). ^cC. K. Bradsher and S. T. Amore, *ibid.*, **65**, 2016 (1943). ^dC. K. Bradsher and S. T. Amore, *ibid.*, **66**, 1280 (1944).


presumably via **312**. In a similar reaction the pyrrolidine enamine of cyclohexanone condenses³³⁷ with 1-acetylcyclohexene to give **313**, in which the position of the double bond is uncertain.

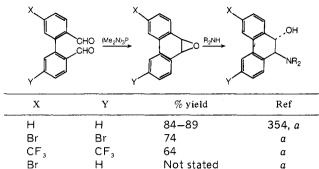
The cyclization, by condensation, of some 2,2'-disubstituted biphenyls has been described. A benzoin-type condensation has led to the formation of phenanthraquinones from both 2,2'-dialdehydo-³³⁸ and also 2-aldehydo-2'-carbalkoxybiphenyls³³⁹ (see eq 10 and 11). The acyloin condensation has been used to cyclize³⁴⁰ a 2,2'-dicarbethoxybiphenyl (see eq 12); again a phenanthraquinone results. Dieckmann-type condensations have also been used. Thus **314** is cyclized³⁴¹ by treatment with sodium


ethoxide yielding ethyl 10-hydroxy-9-phenanthrenecarboxylate (45% yield). The formation of 9-cyano-10-hydroxyphenanthrene from **315**, involves³⁴² ring closure in the intermediate **316**. The base-catalyzed cyclization of **317** occurs³⁴¹ in 85% yield; the product **318** may be converted into phenanthrenes by a number of methods (see Scheme XVI).



4. Reductive Cyclization

The cyclization of a number of 2,2'-disubstituted biphenyls to phenanthrenes is known and the subject was reviewed³⁴³ in 1968. Most of these methods are not particularly attractive as general methods of phenanthrene synthesis. However, reductive cyclization of 2,2'-diacylbiphenyls is a useful route to some 9,10-substituted phenanthrenes.


2,2'-Diacylbiphenyls yield phenanthrenes on treatment with hydrazines. 2,2'-Biphenyldicarboxaldehyde gives³⁴⁴ an almost quantitative yield of phenanthrene, on heating with excess hydrazine in acetic acid. 3,6-Dinitrophenanthrene (88% yield) was obtained in an analogous manner, although the reaction failed to produce 4,5-dialkylphenanthrenes.344 When 2,2'-diacylbiphenyls react with hydrazine a mixture of a phenanthrene and a diazocine results³⁴⁵ (see Scheme XVII). The yield of phenanthrene is optimized by using a large excess of anhydrous hydrazine in boiling diethylene glycol. Hydrazine may also be used 344 to reduce 2,2'-bis(dibromomethyl) biphenyl, when a 60 %yield of phenanthrene is obtained. The use of arylhydrazines has led^{346} to the formation of **319** (X = H, 2-Me, 4-Me, 2-OMe, 4-Cl, 4-Br, 2-NO₂, and 3-NO₂) from 2,2'-biphenyldicarboxaldehyde. The Clemmensen reduction also converts 2,2'-diacetylbiphenyls into phenanthrenes. Thus **320** ($X = H^{347}$ or OMe³⁴⁸) reduced by

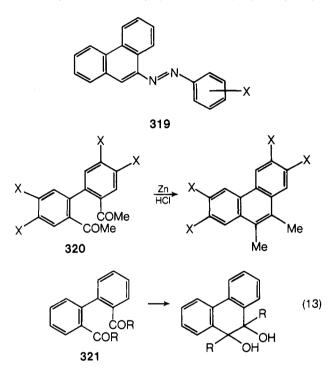

zinc and hydrochloric acid gave the corresponding 9,10-dimethylphenanthrenes. Reduction using magnesium, zinc–alkali, or sodium amalgam leads to 9,10-dihydroxyphenanthrenes. Reductions of **321** ($R = CH_2CH_2Ph$,³⁴⁹ phenyl,³⁵⁰ 4-methylphenyl,^{350,351} 4-biphenyl,³⁴⁹ 2,4-dimethylphenyl,^{349,351} 4chlorophenyl,³⁴⁹ 4-fluorophenyl,³⁴⁹ 2,4,6-trimethylphenyl,³⁵¹ 2,3,5,6-tetramethylphenyl,³⁵¹ and 1-naphthyl^{349,351}) have been carried out (see eq 13). The reductive coupling of mesityl 2methoxyphenyl ketone occurred³⁵² on reduction with magnesium yielding 9,10-dimesitylphenanthrene, with elimination of the methoxy group. A similar reaction has been observed³⁵³ with duryl 2-methoxy- and 2,6-dimethoxyphenyl ketones.

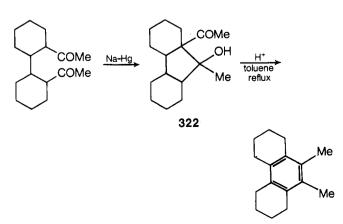
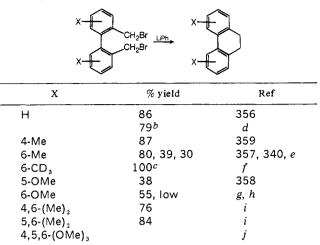
TABLE XXII. Reduction of 2,2'-Biphenyldicarboxaldehydes with Tris(dimethylamino)phosphine

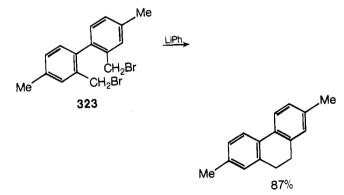
^a A. S. Dey and J. L. Neumeyer, J. Med. Chem., 17, 1095 (1974).

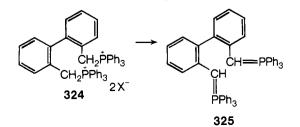
а

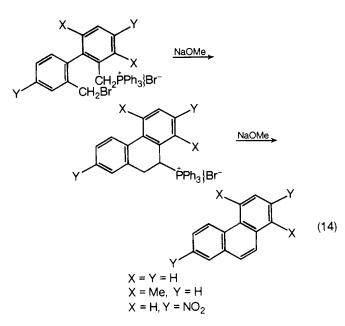
An interesting reducing agent, tris(dimethylamino)phosphine, has been introduced by Newman and Blum,³⁵⁴ which converts 2,2'-biphenyldicarboxaldehyde into 9,10-epoxyphenanthrene. Applications of the use of this reagent are summarized in Table XXII.

The reduction³⁵⁵ of 2,2'-diacetylbicyclohexyl using sodium amalgam does not lead directly to a perhydrophenanthrene; instead 322 was isolated. However, acid-catalyzed rearrangement of 322 leads to 9,10-dimethyl-1,2,3,4,5,6,7,8-octahydrophenanthrene in 16% yield.

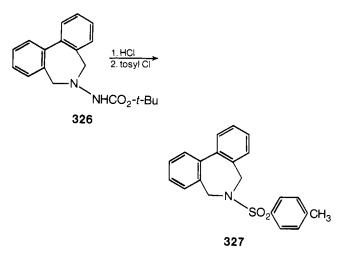



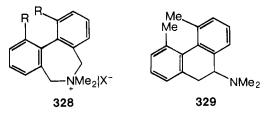

TABLE XXIII, Wurtz Reactions^a of 2,2'-Bis(bromomethyl)biphenyls


^a in the presence of phenyllithium unless otherwise stated. ^b Di-sodio-1,1,2,2-tetraphenylethane used. ^c Yield improved by adding the bis(bromomethyl)biphenyl to the phenyllithium. ^d E. Mueiler and G. Roescheisen, Chem. Ber., **90**, 543 (1957). ^e K. Mislow and H. B. Hopps, J. Am. Chem. Soc., **84**, 3018 (1962). ^J K. Mislow, R. Graeve, A. J. Gordon, and G. H. Wahl, *ibid.*, **86**, 1733 (1964). ^g M. S. Newman and R. L. Childers, J. Org. Chem., **32**, 62 (1967). ^h D. M. Hall and E. E. Turner, J. Chem. Soc., 3072 (1951). ¹ H. A. Karnes, B. D. Kybett, M. H. Wilson, J. L. Margrave, and M. S. Newman, J. Am. Chem. Soc., **87**, 5554 (1965). ^J N. K. Kochetkov, A. Y. Khorlin, and O. S. Chizhov, Izv. Akad. Nauk SSR, Otd. Khim. Nauk 856 (1962). Chem. Abstr., **57**, 13704 (1962). Nauk, 856 (1962); Chem. Abstr., 57, 13704 (1962).

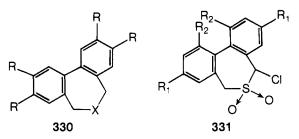

5. Wurtz Cyclization and Related Procedures

The Wurtz-type cyclization of 2.2'-bis(halomethyl)biphenyls was another procedure reviewed by Buntrock and Taylor.³⁴³ The starting materials are readily prepared, by standard methods, from 2,2'-biphenylcarboxylic acids³⁵⁶ or substituted anthranilic aclds³⁵⁷ and 2-iodoalkylbenzenes.³⁵⁸ Typically the reaction involves treatment of a 2,2'-bis(bromomethyl)biphenyl, e.g., 323, 359 with phenyllithium in ethereal solution, resulting in ex-


cellent yields of the corresponding 9,10-dihydrophenanthrene. The method provides an attractive route to a number of 9,10dihydrophenanthrenes, and its applications are summarized in Table XXIII. A closely allied reaction has been used³⁶⁰ to synthesize phenanthrene, 1,4-dimethylphenanthrene, and 2,7dinitrophenanthrene (see eq 14). Similarly, the bis(triphenylphosphonium methyl)biphenyl salt 324 is converted into phen-

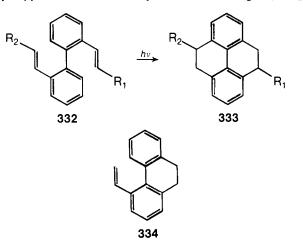


anthrene when treated with sodium hydride. This may occur either directly³⁶¹ with the periodate salt **324** (X = IO_4) or indirectly with the bromide salt **324** (X = Br), which first forms³⁶² the ylide **325**, converted into phenanthrene by atmospheric oxidation.


Carpino³⁶³ has introduced a variation of the general method, which avoids the need to use phenyllithium. The bis(halo-methyl)biphenyl is treated with *tert*-butyl carbazate (NH₂NHCOO-*t*-Bu); the product **326** when hydrolyzed and treated

with *p*-toluenesulfonyl chloride yields **327**, which forms 9,10dihydrophenanthrene (95% yield) on warming with aqueous sodium hydroxide for 2–3 min. The azepinium salts **328** may also be converted into phenanthrene derivatives. Thus **328** (R = H, X = CI) subjected³⁶⁴ to Hofmann elimination conditions gives an unstated yield of phenanthrene, while **328** (R = Me, X = Br)

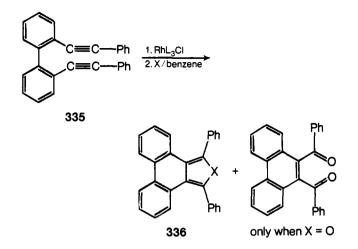
treated^{340,365} with potassium amide in liquid ammonia yields 4,5-dimethylphenanthrene, gradually reduced to its 9,10-dihydro derivative on prolonged reaction. The use of phenyllithium in the latter process allows the isolation of the intermediate **329** (85% yield). The dibenzooxepin **330** (R = H, X = O) is converted³⁶⁶ into 9-hydroxy-9,10-dihydrophenanthrene in 90% yield by potassium amide in liquid ammonia or in 25% yield using³⁶⁷ *tert*butyl peroxide. The tetramethoxy derivative **330** (R = OMe, X



= O) gives³⁶⁸ the corresponding phenanthraquinone on sodium dichromate oxidation. Thiepins too have yielded phenanthrenes. Thus **330** (R = H, X = S) desulfurized³⁶⁹ by Raney nickel results in a 25% yield of phenanthrene. Paquette³⁷⁰ has introduced an elegant method, by which 2,7-dihydro-3,4,5,6-dibenzothiepins are converted into phenanthrenes. The thiepin chlorinated by sulfuryl chloride and oxidized by *m*-chloroperbenzoic acid yields **331** (R₁ = R₂ = H or R₁ = Me, R₂ = H) which undergoes base-catalyzed rearrangement to phenanthrene (96% yield) or 2,7-dimethylphenanthrene (92% yield), respectively; however, the rearrangement fails to proceed for **331** (R₁ = H, R₂ = Me).

6. Photocyclizations

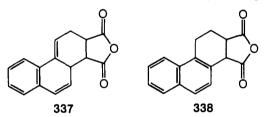
The photocyclization of biphenyloid derivatives has not so far provided any important general methods for the synthesis of phenanthrenes.


The photocyclization of biphenylylethenes is known. Thus the photolysis³⁷¹ of 2-biphenylylethene itself, in benzene in the presence of oxygen, gives a 100% conversion to 9,10-dihy-drophenanthrene. Ultraviolet irradiation, under anaerobic conditions, of **332** leads^{372,373} to the formation of 4,5,9,10-te-trahydropyrenes **333** for a variety of substituents, e.g., $R_1 = R_2$

= H, CN, CO₂Et, and Ph; R₁ = H, R₂ = Ph. In the case where R₁ = R₂ = H, then a little of the intermediate 9,10-dihydrophenanthrene **334** was also isolated.³⁷³ Padwa and Mazzu³⁷² have shown that **334** can be obtained in good yield in a short-term irradiation. A useful photocyclization of the sodium enolate of diethyl 2-biphenylylmalonate yields³⁷⁴ ethyl 9-hydroxyphenanthrenecarboxylate in 70% yield. The photochemical oxidation of 2,2'-biphenyldicarboxaldehyde yields³⁷⁵ phenanthraquinone.

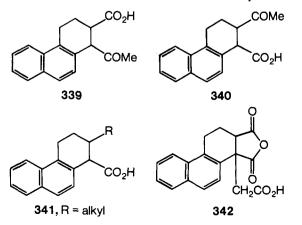
7. Miscellaneous Methods

Tris(triphenylphosphine)rhodium(I) chloride forms³⁷⁶ a 1:1 complex with **335**, which, when treated with oxygen, gave 51% of 9,10-dibenzoylphenanthrene and 10% **336** (X = O). Treatment of the complex with carbon monoxide, sulfur, or selenium gave **336** (X = CO, S or Se) in 63, 60, or 11% yield, respectively.

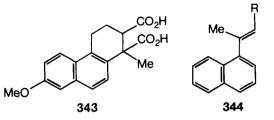


IV. Intermolecular Cycloaddition Reactions

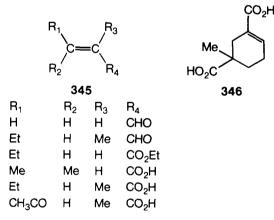
A. From Naphthalenes


1. Naphthalene Derivatives as Dienes

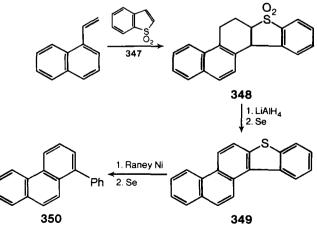
1- and 2- vinylnaphthalene derivatives have sufficient diene activity to undergo the Diels-Alder reaction with typical dienophiles.³⁷⁷⁻³⁷⁹ In some cases the expected adduct, for example, **337** from 1-vinylnaphthalene and maleic anhydride, can be isolated, although more usually this initial structure is isomerized under the reaction conditions to the aromatic system (e.g., **338**).

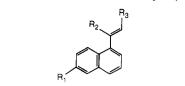


The conversion of **337** into **338** can also be accomplished easily in a separate step. Structures such as **337** and **338** are readily dehydrogenated to the fully aromatic phenanthrenes, so that the Diels-Alder reaction constitutes a useful method for the synthesis of phenanthrenes. One of the major interests in the reported work in this area has been in the synthesis of steroid skeleta, when the geometry of the adducts has been a central issue. In this review the configurations of the adducts have been ignored, since the adducts are regarded only as intermediates in the preparation of the aromatic phenanthrenes. Certain diene additions have been excluded from consideration because the main objective of the reported work has been the aquisition of derivatives containing angular alkyl groups.

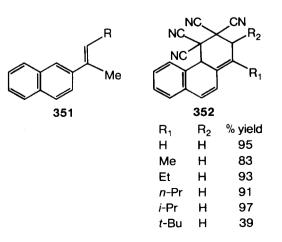

With unsymmetrical dienophiles two structural isomers are possible, and in many cases a mixture is obtained. Addition of β -acetylacrylic acid to 1-vinylnaphthalene gives³⁸⁰ a mixture of **339** and **340** in the ratio of 4:1. In other cases only one of the

two possible isomers has been reported, for example,³⁸¹ the adduct of β -alkylacrylic acid and 1-vinylnaphthalene is **341**, and with aconitic acid³⁸¹ the product is **342**. The addition of citraconic anhydride to 1-vinyl-6-methoxynaphthalene yields³⁸² the dicarboxylic acid **343**. An adduct between 1-vinylnaphthalene and cinnamaldehyde has been reported,³⁸³ but the orientation was not proved. In most cases the orientation of addition has been established by modifying the side chain, then dehydrogenating to phenanthrenes. Thus, 1-methylphenanthrene has been obtained³⁸¹ from **342**. In certain cases, when the addition reaction is carried out under more severe conditions, only the aromatic phenanthrene is isolated. Thus, when 1-vinylnaphthalene is fused with fumanonitrile, the product is³⁸³ phenanthrene-1,2-dicarboxylic anhydride. The same product is available³⁸¹

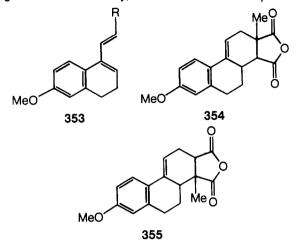

by adding acetylenedicarboxylic acid to 1-vinylnaphthalene. It has been concluded³⁸⁴ that the reaction of **344** (R = H or Me) with maleic anhydride gave such poor yields of adducts that the Diels–Alder reaction does not constitute a satisfactory method for the preparation of certain alkylphenanthrenes. The dienophiles **345** and **346** have been reported^{380,381} not to react with


1-vinyInaphthalene. A summary of successful cycloadditions to 1-vinyInaphthalenes appears in Table XXIV.

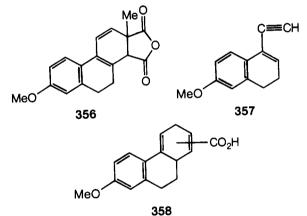
An interesting variant on the reactions considered above involves³⁸⁵ the addition of **347** to 1-vinylnaphthalene. The adduct, **348**, obtained in 75% yield, can be converted via **349** to 1phenylphenanthrene **350** (Scheme XVIII).


TABLE XXIV. Diene Additions of 1-VinyInaphthalenes

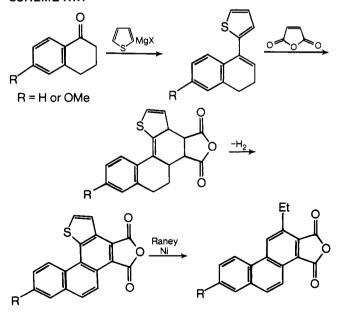
R	R ₂	R ₃	Dienophile	% yield of adduct	Ref
н	н	н	MAa	32	386
H	н	Н	МА	35	b
OMe	н	Н	МА	Low	386
OMe	н	н	МА	30	с
н	н	н	CH₃COCH CHCO₂H	36	380
н	н	н	MeCH=CHCO ₂ H	26	381
H	н	н	EtCH=CHCO ₂ H	18	381
Н	н	н	CH ₂ ==CHCO ₂ H	12	381
Н	н	Н	CH ₂ ==CBrCO ₂ H	18	381
Н	н	Н	CH ₂ =CHCOMe	5	381
н	н	Н	Me(CN)C=CHCO2Et	19	381
н	н	н	Aconitic acid	14	381
н	н	Н	Chloromaleic anhydride	40	381
н	н	н	MA	57	382
OMe	н	Н	MA	30	382
н	н	Н	Diethyl maleate	89	382
OMe	н	н	Fumaric acid	72	382
OMe	н	Н	Citraconic anhydride	60	382
OMe	н	Н	Mesaconic anhydride	72	382
н	н	Н	PhCH=CHCHO		383
Н	Н	н	Cyclopentene-1,2- dicarboxylic anhydri	de	d
н	Me	Н	МА	8	384
н	Me	Me	МА	4	384
н	Н	Me	МА	77	е
н	Н	н	$(NC)_2C = C(CN)_2$		f


^a MA = maleic anhydride. ^b V. R. Skvarchenko, W-L. Lin, and R. Ya. Levina, Zh. Obshch. Khim., **31**, 383 (1961); Chem. Abstr., **55**, 22259 (1961). ^c W. E. Bachmann and M. C. Kloetzel, J. Am. Chem. Soc., **60**, 2204 (1938). ^d S. C. Gupta and A. Bahattacharyya, J. Indian Chem. Soc., **31**, 897 (1954); Sci. Cult., **18**, 439 (1953). ^c L. F. Fieser and W. H. Daude, J. Am. Chem. Soc., **63**, 782 (1941). ^f W. H. Cherry, J. T. Craig, Q. N. Porter, H. G. Upstill, and S. Sternhell, Tetrahedron Lett., 4727 (1972).

Although adducts with 2-vinylnaphthalenes can be obtained, the reaction has not been studied so widely as the corresponding additions to 1-vinylnaphthalene. 2-Vinylnaphthalene itself forms³⁸⁶ an adduct (6%) with maleic anhydride, and **351** (R = H or Me) also reacts.³⁸⁴ By using nitrobenzene as solvent, the fully aromatic phenanthrene can be formed directly. A more reactive dienophile, tetracyanoethylene, enables the adducts **352** to be formed³⁸⁷⁻³⁸⁹ in high yields from 2-vinylnaphthalenes. Maleic anhydride adds³⁸⁷ to the more reactive 6-methoxy-2vinylnaphthalene to give the expected adduct in 75% yield.

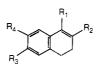


1-Vinyl- and 2-vinyl-3,4-dihydronaphthalenes have also been used as dienes (Table XXV). Once again the incentive has been to develop methods for steroid synthesis, but some adducts have been dehydrogenated to phenanthrene derivatives.


The addition of citraconic anhydride to 6-methoxy-1-vinyl-3,4-dihydronaphthalene (353, R = H) was originally³⁹⁰ believed to give the adduct 354 only, but later workers^{391,392} reported the

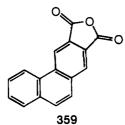
formation of both **354** and **355**. Dienophiles such as methyl vinyl ketone also provide^{393,394} mixtures resulting from both modes of addition. However, the addition of citraconic anhydride to **353** (R = OAc) is claimed³⁹⁵ to give only the adduct **356**. An interesting variation of potential significance is summarized in Scheme XIX.

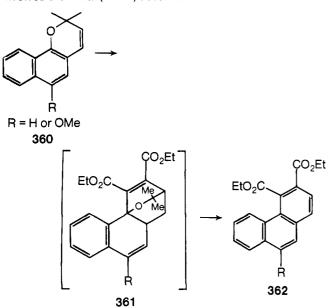
SCHEME XIX


TABLE XXV. Diene Additions to 1-Vinyl-3,4-dihydronaphthalenes

R,	R ₂	R ₃	Other	Dienophile	% adduct	Ref
Н	Н	Н		MA	<u> </u>	a
MeO	н	н		MA	49	a, b
					65	С
					70	d
OMe	н	Н	7-OMe	MA	41	е
Н	AcO	н		MA	50	f
н	OMe	н		CH2=CHCO2Me	80	g
OMe	Н	н		CH2=CHCQ,Et	32	394, h
OMe	н	н	5,7-(OMe),	CH2=CHCO,Me	88	i
OMe	н	н		CH ₂ =C(Me)CO ₂ Me	43	j
OMe	н	Н		CH,=CHCOMe	32	393, 394
OMe	н	OAc		CH ₂ ==C(Me)CO ₂ Me	47	k
OMe	н	Н		EtCH=C(Me)CO,H		1
OMe	н	н		Citraconic anhydride	70	380, 390-392
OMe	Н	OAc		Citraconic anhydride	51	395
OMe	н	н		MeCOCH=CHCOMe	30	m
OMe	н	н		CH2=CHCO1H		n
OMe	н	н		CH,=C(Me)CO,H		n

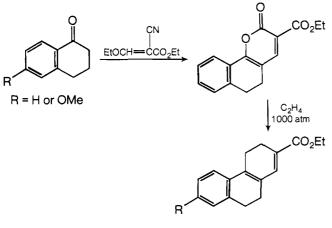
^aE. Dane, O. Hoss, A. W. Bendsell, and J. Schmitt, Justus Liebigs Ann. Chem., **532**, 39 (1937); **536**, 183 (1938). ^bV. M. Andreev, S. M. Segal, and V. F. Kucherov, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, 1475 (1961); Chem. Abstr., **56**, 428 (1962). ^cV. F. Kucherov, V. M. Andreev, and L. K. Lysauchuk, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, 1796 (1960); Chem. Abstr., **55**, 1795 (1961). ^dI. N. Nazarov, I. V. Torgov, and G. P. Verkholetova, *Dokl. Akad. Nauk SSSR*, **01**, 12, 1067 (1957); Chem. Abstr., **51**, 14647 (1957). ^eV. Askam, H. Williams, and D. Jones, British Patent 1 281 466; Chem. Abstr., **77**, 101293 (1972). ^JM. F. Anseil and G. T. Brooks, *J. Chem. Soc.*, 201 (1961), ^gZ. G. Hajos, K. J. Doebel, and M. W. Goldberg, *J. Org. Chem.*, **29**, 2527 (1964). ^hF. Hoffmann-La Roche and Co., British Patent 825 907; Chem. Abstr., **54**, 15346 (1960). ^lP. N. Rao, B. E. Edwards, and L. R. Axelrod, *J. Chem., Soc., C*, 2863 (1971). *J. M. W. Goldberg, L. M. Jampolsky*, and R. W. Kierstead, French Patent 1 377 005; Chem. Abstr., **52**, 14601 (1965). ^kT. I. Sorokina, I. I. Zaretskaya, and I. V. Torgov, *Dokl. Akad. Nauk SSSR*, **129**, 345 (1959); Chem. Abstr., **54**, 7659 (1960). ^lE. Buchta and H. Bayer, Chem. Ber., **90**, 1647 (1957). ^mM. Goldberg and P. Muller, *Helv. Chim. Acta*, **23**, 831 (1940). ⁿT. R. Klose and L. N. Mander, Aust. J. Chem., **27**, 1287 (1974).


TABLE XXVI. Dihydronaphthalenes as Dienophiles

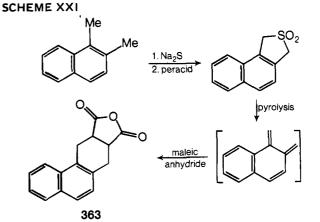

R ₁	R ₂	R ₃	R ₄	Other	Diene	Yield, %	Re
CO ₂ Et	Н	Н	н		Butadiene	27	a
CO ₂ Et	н	н	OMe		Butadiene	13	а
CO ₂ Et	н	н	Н		2,3-Dimethylbutadiene	21	а
CO, H	н	н	Н		Butadiene	23	b
со,н	Н	н	н		2,3-Dimethylbutadiene	74	b
CO H	н	OMe	Н		Butadiene	31	b
со,н	н	OMe	н		2,3-Dimethylbutadiene	85	b
CO₂Et	Н	Br	OMe	C(8)-OMe	2,3-Dimethylbutadiene	54	b
2					Butadiene	9	b
H	CO'H	Br	н		Butadiene	13	С
Η	со,҄н	Br	н		2,3-Dimethylbutadiene	31	с
н	со,н	OMe	OMe		2,3-Dimethylbutadiene	11	с
	-					(63	d
CO-C	0–CO	н	н		Butadiene	{40	е
						72	е
CO-C	0–CO	н	Н		2,3-Dimethylbutadiene	97	d
CO-C	0–CO	OMe	н		Butadiene	75	à
co-c	0–CO	н	OMe		Butadiene	75	a
COC)-CO	OMe	OMe		Butadiene	75	a
CO-C	D-CO	он	он		Butadiene	75	à
CO-C	D-CO	Me	OMe		Butadiene	75	a
CO-C)-CO	н	Bu ^t		Butadiene	75	d
CO-C)-CO	Н	н		2-Methylbutadiene	80	е

^aL. F. Fieser and H. L. Holmes, J. Am. Chem. Soc., **58**, 2319 (1936). ^bL. F. Fieser and H. L. Holmes, *ibid.*, **60**, 2548 (1938). ^cH. L. Holmes and L. W. Trevoy, *Can. J. Res.*, **B22**, 56 (1944). ^aL. F. Fieser and E. B. Hershberg, J. Am. Chem. Soc., **57**, 2192 (1935). ^eV. R. Skvarchenko, L. A. Chervoneva, V. A. Puchnova, and R. Ya. Levina, *Zh. Obshch. Khim.*, **30**, 54 (1960); *Chem. Abstr.*, **54**, 21017h (1960).

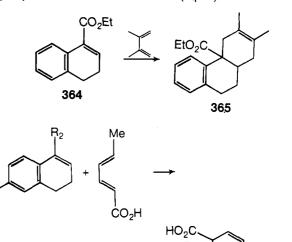
The acetylenic derivative **357** also behaves as a diene^{396,397} toward maleic anhydride, *p*-benzoquinone, and propiolic acid. With the latter, the mixture of the two possible isomers **358**, obtained in 45% yield, contains a 4:1 ratio of the C-2 and the C-1 acids. Propiolic acid also adds³⁹⁸ to 1- and to 2-naphthylpropiolic acids to give the same adduct **359**.



A variation which has not been extensively studied involves³⁹⁹ the addition of diethyl acetylenedicarboxylate to **360**, when the phenanthrene **362** can be isolated. Presumably the reaction involves the initial (4 + 2) adduct **361**.

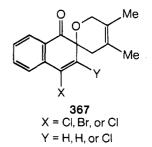

A new phenanthrene synthesis⁴⁰⁰ is summarized in Scheme XX, and a preparation⁴⁰¹ of the 1,2,3,4-tetrahydrophenanthrene **363** is summarized in Scheme XXI. These methods have been insufficiently studied to establish their scope.

SCHEME XX



2. Naphthalenes as Dienophiles

3,4-Dihydronaphthalenes that possess ethoxycarbonyl or carboxylic acid groups at C-1 and/or C-2 react with butadiene or 2,3-dimethylbutadiene to give varying amounts of the expected adducts, for example, $364 \rightarrow 365$ (Table XXVI). 3,4-



Dihydronaphthalenes have also been^{402,403} added to sorbic acid to give phenanthrene derivatives **366** (eq 15).

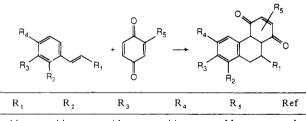
 R_2 (15) `Me R₁ 366 R_2 R₁ % yield Н н 18 н 12 Me OMe Н 12 The first report that 1,2-naphthoquinones add to dienes was

made in 1934,⁴⁰⁴ and in recent years the scope of this reaction has been more closely defined. Simple adducts have been obtained in a number of cases (Table XXVII), although with 4chloro-, 4-bromo- and 3,4-dichloro-1,2-naphthoquinones addition of 2,3-dimethylbutadiene leads⁴⁰⁵ to the spiro compound **367**, rather than to the expected (4 + 2) cycloadduct.

B. From Styrenes

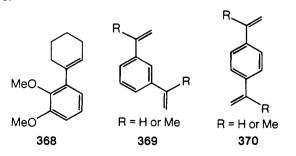
R₁

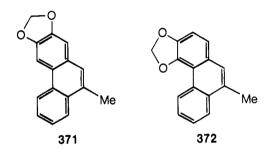
Dienophiles such as *p*-benzoquinones will add to certain styrenes to give phenanthrene derivatives (Table XXVIII). Hydrophenanthrenes have also resulted from the addition of maleic


TABLE XXVII. 1,2-Naphthoquinones as Dienophiles

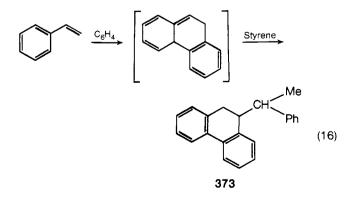
R ₁	R ₂	R ₃	R ₄	R ₅	Diene	% adduct	Ref
Н	Н	Η	н	Н	2,3-Dimethylbutadiene	69	405
Н	CH ₂ Ph	н	н	н	2,3-Dimethylbutadiene	65	b
Н	CH(CO ₂ Et) ₂	н	н	Н	2,3-Dimethylbutadiene		b
н	CH,CN	Ĥ	н	Ĥ	Butadiene	56	c, d
н	CH ₂ CN	н	OMe	Н	Butadiene	60	е
н	CH ₂ CN	н	OMe	н	2,3-Dimethylbutadiene	71	е
н	CH ₂ CN	OMe	OMe	Н	Butadiene		d
н	CN	н	н	н	2,3-Dimethylbutadiene	83	405
Н	CI	н	н	н	2,3-Dimethylbutadiene	а	f
Me	н	н	н	Me	2,3-Dimethylbutadiene		404
CO,Me	Н	н	н	н	2,3-Dimethylbutadiene	84	405
OMe	Н	н	н	н	2,3-Dimethylbutadiene	75	405
CI	Н	н	н	н	2,3-Dimethylbutadiene	84,70	405, †
Br	н	н	н	н	2,3-Dimethylbutadiene	76	f
NO,	н	н	н	H,	2.3-Dimethylbutadiene	85	405

^a Adduct eliminates HCI leading to 2,3-dimethylphenanthraquinone (15% yield). ^bL. F. Fieser and C. K. Bradsher, J. Am. Chem. Soc., 61, 417 (1939). ^cM. Gates and W. F. Newhall, *ibid.*, 70, 2261 (1948). ^dM. D. Gates, U.S. Patent 2 766 245 (1956); Chem. Abstr., 51, 6710 (1957). ^eM. Gates and W. G. Webb, J. Am. Chem. Soc., 80, 1186 (1958). ^fL. F. Fieser and J. T. Dunn, *ibid.*, 59, 1016 (1937).

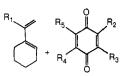

TABLE XXVIII. Addition of *p*-Benzoquinone to Styrenes


н	н	н	н	Me	a, b
н	н	н	Н	OMe	a-c
н	н	н	OMe	Me	b
Н	Me	Н	н	Me	a, b
н	Me	н	н	OMe	<i>ac</i>
н	OMe	н	н	Me	ь
Me	н	OMe	он	н	d

^a M. Lora-Tamayo, Tetrahedron, 4, 17 (1958), ^b M. Lora-Tamayo, A. Alberola, and C. Corral, An. Real Soc. Espan. Fis. Quim., Ser. B, 53, 63 (1957); Chem. Abstr., 51, 12057 (1957). ^CY. Inouye and H. Kakisawa, Bull. Soc. Chem. Jpn., 44, 563 (1971); Chem. Abstr., 74, 99700 (1971). ^d M. Lora-Tamayo, Mem. Acad. Cienc. Artes Barcelona, 28, 197 (1946); Chem. Abstr., 41, 4468 (1947).


anhydride to 368^{406} and by ''double additions'' to 369 and 370.407,408

One of the more interesting developments occurred when it was found⁴⁰⁹ that arynes will add to styrenes yielding either 9,10-dihydrophenanthrenes or phenanthrenes. Although yields are usually modest, the reaction has the great merit that target molecules are available in one step from readily available starting materials. The reaction is typified by the addition of benzyne to isosafrole when^{410,411} a mixture of **371** and **372** and the corresponding 9,10-dihydrophenanthrenes was formed. The



reaction mixture can become very complex when an unsymmetrical benzyne is used, thus limiting the scope of the reaction sequence. For example,⁴¹² 4-chlorobenzyne adds to isosafrole to give an inseparable mixture of the 6- and 7-chloro derivatives of 371 and 372. Wolthuis⁴¹³ isolated three products from the reaction of benzyne with α -methylstyrene, viz., 9-methylphenanthrene (4%), 2,3-diphenylpropene (32%), and 9-benzylphenanthrene (18%). The reaction of benzyne with styrene itself has been studied by a number of workers. In the first investigation⁴¹⁴ benzyne was generated by reacting o-fluorobromobenzene with magnesium, but a pure product could not be isolated; later it was found⁴¹⁵ to react with a fivefold excess of styrene to provide 9-phenyl-9,10-dihydrophenanthrene in 87% yield. By using benzyne formed by the aprotic diazotization of anthranilic acid and a 50-fold excess of styrene, a mixture of the diastereoisomers of 373 has416 been isolated (26% yield). The product is believed to arise from an ene reaction between styrene and the initial adduct (see eq 16).

•

TABLE XXIX. Additions to 1-Vinylcyclohexenes

R _i	R ₂	R ₃	R4	R _s	Other	Adduct	%	Ref
н	н	н	н	н				a-d
н	OMe	н	Н	н		CO ₂ Me	63	e
4	CO₂Me	CO₂Me	н	н		CO ₂ Me	38	f
4	н	OMe	н	Me			5	g
OAc	CO₂Me	CO₂Me	н	н		AcO	30	f, h
OAc	н	Н	н	н			62 67 48	i j k m
DAc	Me	н	н	Me		Aco	45	m
DAc	CO2Et	н	н	н		Aco		h
DAc	CN	CN	н	н				h
)Ac	Me	н	н	н		AcO Me	35	i
						+ 0		

10 i

Me

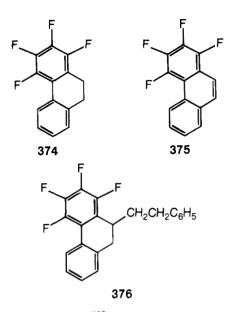
AcO

TABLE XXIX (continued)

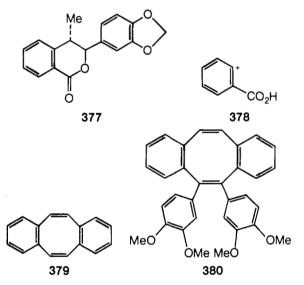
R ₁	R ₂	R ₃	R ₄	Rs	Other	Adduct	%	Ref
OAc	Me	н	Me	н		Aco Me Me	46	i
OAc	Me	н	н	OMe			82	i
OAc	Me	н	н	н		AcO OH Me	27	i
OAc	CO₂Et	н	н	н			97	i
OAc	CO₂Et	Me	OMe	н			39	i
OAc	CO₂Et	н	н	Me			63	i
ОМе	н	н	н	н			72	n
OAc	CN	CN	н	н			50	0
OAc	CO ₂ Et	CO₂Et	н	Ĥ			30	0
OAc	CO₂Me	Me	н	Me			11	0
OAc	Me	н	Me	CO₂Et			56	0
OAc	Me	CO₂Me	CO ₂ Me	Me		Aco Me Me CO ₂ Et	43	0

TABLE XXIX (continued)

R	R ₂	R ₃	R ₄	R ₅	Other	Adduct	%	Ref
OAc	Me	CO₂Me	н	OMe		AcO AcO CO ₂ Et	11	0
Ph	н	н	н	н		Ph C	13	р
Ph	н	Me	н	<i>p</i> -ToIS		Ph STol	25	р
н	н	н	н	н	2-Me or 6-Me	Me	25	q
н	н	н	н	н	6-Me	Me	25	q, r
н	н	н	н	н	6,6-(Me) ₂	Me Me		8
						He He OH		·
н	н	н	н	н			87	t, u

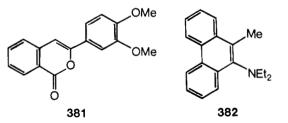

^aS. Sugasawa and K. Kodama, Chem. Ber., **72**, 675 (1939). ^bI. N. Nazarov, G. P. Verkholetova, and I. V. Torgov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 283 (1959); Chem. Abstr., **53**, 22082 (1959). ^cH. Christol, F. Pietrasanta, Y. Pietrasanta, and J. C. Rousselou, Bull. Soc. Chim. Fr., 2770 (1972). ^dG. Ohloff, H. Farnow, and G. Schade, Chem. Ber., **89**, 1549 (1956). ^eA. Alberola, M. Loga-Tamayo, A. del Rey, J. L. Soto, and M. Soto, An. Real. Soc. Espan. Fis. Quim., Ser. B, **59**, 151 (1963); Chem. Abstr., **59**, 9927 (1963). ^JM. F. Ansell, B. W. Nash, and D. A. Wilson, J. Chem. Soc., 3012 (1963). ^BA. Alberola, F. Amat, M. Lora-Tamayo, and J. L. Soto, An. Real. Soc. Espan. Fis. Quim., Ser. B, **59**, 151 (1963); M. Sch, D. A. Wilson, and J. W. Lown, Proc. Chem. Soc., 405 (1960). ^IM. F. Ansell and B. A. Knights, J. Chem. Soc., 2903 (1961); M. F. Ansell and G. C. Culling, *ibid.*, 2908 (1961). ^JI. N. Nazarov, V. F. Kucherov, V. M. Andreev, and G. M. Segal, Dokl. Akad. Nauk SSSR, **104**, 729 (1955); Chem. Abstr., **50**, 11304 (1956). ^kM. Mousseron, F. Winternitz, and G. Balmossiere, C. R. Acad. Sci., Ser. C, **243**, 1328 (1956). ^mM. F. Ansell and G. T. Brooks, J. Chem. Soc., 4518 (1956). ⁿI. A. Favorskaya and L. V. Fedorova, Zh. Obshch. Khim., **24**, 242 (1954); Chem. Abstr., **49**, 4538 (1955). ^OM. F. Ansell, B. W. Nash, and D. A. Wilson, J. Chem. Soc., 3006 (1963). ^PV. Georgian and J. Lepe, J. Org. Chem., **29**, 45 (1964). ^AP. A. Robens and J. Waiker, J. Chem. Abstr., **69**, 2740 (1968). ^TK. K. Pivnitskii and I. V. Torgov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1080 (1961); Chem. Abstr., **59**, 27238 (1961). ^{Ju}I. V. Torgov, Tr. Konf. Vop. Str. Reakts. Sposobn. Atsetalei, Akad. Nauk Kirg. SSR, Inst. Organ. Khim., 3 (1961); Chem. Abstr., **60**, 7963 (1964).

The more electrophilic tetrahalogenobenzynes have also been employed,⁴¹⁷⁻⁴²⁰ and a number of different types of products have been isolated, depending upon conditions. Thus, tetrachlorobenzyne (from pentachlorophenyllithium) reacted with styrene to give 1,2,3,4-tetrachloro-9,10-dihydrophenanthrene in 34% yield, whereas the corresponding phenanthrene resulted (75% yield) when the aryne was generated from anthranilic acid.^{417,421} Tetrafluorobenzyne has also been formed by a variety of methods and reacted with styrene; the compounds **374**, **375**, and **376** have been identified among the products. 2-Methyl-, 3-methyl-, 4-methyl-, and 2,4-dimethylstyrene react with

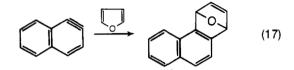

tetrafluorobenzyne in an analogous way.417-420

The method used to generate the aryne can be very important, as can the solvent and temperature at which the reaction is conducted.⁴¹¹ Probably the best method used so far is the aprotic diazotization of anthranilic acids.^{422,423} When benzenediazonium-2-carboxylate hydrochloride is used⁴²⁴ to form benzyne in the presence of isosafrole, the major product is *trans*-3-(3',4'-methylenedioxyphenyl)-4-methyl-3,4-dihydroisocoumarin (**377**), presumably derived by formation of **378**, followed by its attack at the double bond of isosafrole.

Phenylacetylene reacts with benzyne (from benzenediazon-

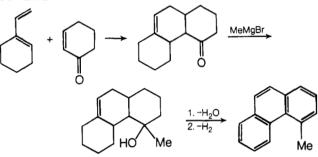


ium-2-carboxylate) to form⁴²⁵ a hydrocarbon mixture from which phenanthrene and **379** can be isolated. When the benzyne was generated from benzenediazonium-2-carboxylate hydrochloride or by the aprotic diazotization of anthranilic acid, 9-phenylphenanthrene, as well as phenanthrene and **379**, was isolated. The reaction between 3,4-dimethoxyphenylacetylene and benzyne gives⁴¹¹ a 40% yield of 2,3-dimethoxyphenanthrene together⁴²⁶ with some 3,4-dimethoxyphenanthrene and the cyclooctatetraene **380**. When the benzyne was⁴²⁶ generated from ben-

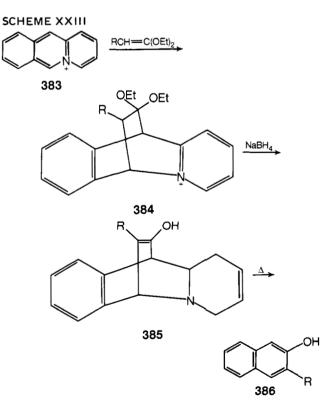

zenediazonium-2-carboxylate hydrochloride and reacted with 3,4-dimethoxyphenylacetylene, the above three compounds were again isolated, together with the isocoumarin **381**.

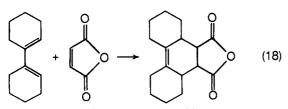
An interesting preparation of phenanthrenes involves⁴²⁷ the treatment of *o*-chlorophenylmagnesium bromide sequentially

with chromic chloride (to form $(o-ClC_6H_4)_3Cr$) and methylphenylacetylene when 9-phenyl-10-methylphenanthrene is produced in almost 60% yield; a benzyne intermediate is implicated. The phenanthrene **382** is formed⁴²⁸ in 10% yield when benzyne (from *o*-fluorobromobenzene) reacts with N,N-diethylaminopropyne.

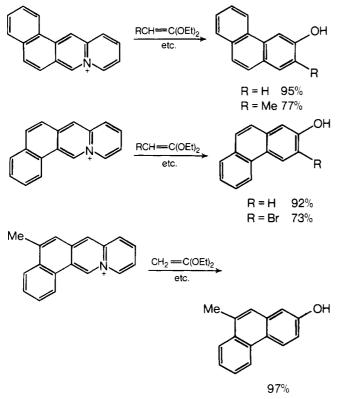

An alternative route to phenanthrenes involving an aryne was reported by Wittig and Benz^{429–431} and involves the Diels–Alder reaction between 1,2-naphthyne and furan (eq 17).

C. Miscellaneous Methods


1-Vinylcyclohexenes behave as dienes toward typical dienophiles, and since the dienes are readily accessible and the adducts can be dehydrogenated to phenanthrenes, these reactions do provide a useful route to phenanthrenes. Almost all of the reactions reported have utilized *p*-benzoquinones as dienophiles (Table XXIX). α,β -Unsaturated ketones have also been used⁴³² (Scheme XXII).


SCHEME XXII

Reduced phenanthrenes have been prepared⁴³³⁻⁴⁴⁵ by adding, e.g., maleic anhydride to 1,1'-bicyclohexenyl (eq 18), but since these structures are far removed from the aromatic phenanthrene state of oxidation, they are of limited importance.


A recent paper⁴⁴⁶ contains a description of the cycloadducts

384, derived from guaternary salts such as 383 and ketone acetals. Reduction of 384 with sodium borohydride gives 385, which upon thermolysis undergoes a retro-Diels-Alder reaction to yield 386 (Scheme XXIII). When this sequence is applied⁴⁴⁶ to the appropriate quaternary salts, it constitutes a method for the preparation of phenanthrenes (Scheme XXIV).

SCHEME XXIV

Acknowledgment. It is a pleasure to acknowledge the help of Mr. P. R. Mills of the Library Staff of Bath University for his assistance with the literature survey.

V. References

- (1) (a) University of Bath; (b) Wellcome Research Laboratories.
 (2) R. Fittig and E. Ostermayer, Justus Liebigs Ann. Chem., 166, 361 (1873). "Polycyclic Hydrocarbons", Vol. 1, Academic Press, London, (3) E. Clar. 1964, Chapter 21.
- L. F. Fieser and M. Fieser, "Natural Products Related to Phenanthrene", (4)
- ard ed, Reinhold, New York, N.Y., 1949, p 83. (a) P. H. Leake, *Chem. Rev.*, **56**, 27 (1956); (b) D. F. De Tar, *Org. React.*, (5) 9, 409 (1957); (c) R. A. Abramovitch, Adv. Free-Radical Chem., 2, 87 (1967); (d) T. Kametani and K. Fukumoto, J. Heterocycl. Chem., 8, 341 (1971)
- (6)(a) F. R. Stermitz, "Organic Photochemistry", Vol. 1, O. L. Chapman, Ed., Marcel Dekker, New York, N.Y., 1967, p 247; (b) E. V. Blackburn and C. J. Timmons, *Q. Rev., Chem. Soc.*, **23**, 482 (1969).
- (a) C. K. Bradsher, Chem. Rev., 38, 447 (1946); (b) S. D. Saraf and I. (7)
- Ahmad, J. Math. Sci., Univ. Islamabad, 1, 75 (1974). (8) L. R. C. Barclay, "Friedel-Crafts and Related Reactions", Vol. 2, Part 2, G. A. Olah, Ed., Interscience, New York, N.Y., 1964, p 785.
- (9) A. T. Balaban and C. D. Nenitzeseu, ref 8, p 1012.
 (10) S. Sethna, ref 8, p 911.
 (11) K. Iwamoto and E. Ota, Senryo To Yakuhin, 14, 238 (1969); Chem. Abstr.,
- K. Iwarnoto and E. Ota, Serryo To Yakunin, 14, 238 (1969); Chem. Abstr., 71, 112666 (1969).
 (12) (a) I. V. Torgov, Pure Appl. Chem., 6, 525 (1963); (b) T. B. Windholz and M. Windholz, Angew. Chem., Int. Ed. Engl., 3, 353 (1964); (c) L. Velluz, J. Valls, and G. Nomine, *ibid.*, 4, 181 (1965); (d) J. S. Baran, Annu. Rep. Med. Chem., 281 (1968); (e) R. Pappo, Intra-Sci. Chem. Rep., 3, 123 (1969); (f) P. Crabbe, G. A. Garcia, G. A. Haro, L. A. Maldonado, C. Rius, and E. Santos. Targonoide Steroide, 2, 230 (1972) (c) R. Crabbe, G. A. and E. Santos, Terpenoids Steroids, 2, 329 (1972); (g) P. Crabbe, G. A Garcia, A. Guzman, L. A. Maldonado, G. Perez, C. Rius, and E. Santos,

- *ibid.*, **3**, 409 (1973). (a) N. A. J. Rogers and J. A. Barltrop, *Q. Rev., Chem. Soc.*, **16**, 117 (1962); (13)(b) J. W. ApSimon and J. W. Hooper, Total Syn. Nat. Prod., 2, 559 (1973); (c) C. H. Heathcock, ibid., 2, 197 (1973).
- W. G. Brown and B. Bluestein, J. Am. Chem. Soc., 62, 3256 (1940). (14)
- (15) A. Werner and A. Grob, *Chem. Ber.*, 37, 2887 (1904).
 (16) W. G. Brown and B. A. Bluestein, *J. Am. Chem. Soc.*, 65, 1235 (1943).
- (17) P. M. G. Bavin, Can. J. Chem., 38, 911 (1960).
- (17) F. M. G. Bavin, Can. J. Chem., 36, 911 (1960).
 (18) P. M. G. Bavin and M. J. S. Dewar, J. Chem. Soc., 4477 (1955).
 (19) B. M. Benjamin and C. J. Collins, J. Am. Chem. Soc., 75, 402 (1953).
 (20) C. J. Collins and B. M. Benjamin, J. Am. Chem. Soc., 75, 1644 (1953).
 (21) F. A. L. Anet and P. M. G. Bavin, Can. J. Chem., 35, 1084 (1957).
- (22) M. S. Newman, T. B. Patrick, R. S. Dariak, and E. A. Zuech, J. Org. Chem., 34, 1904 (1969)
- (23) R. Quelet, J. Hoch, C. Borgel, M. Mansouri, R. Pineau, E. Tchiroukine, and N. Vinot, Bull. Soc. Chim. Fr., 26 (1956). (24) E. J. Greenhow and D. McNeil, J. Chem. Soc., 3204 (1956).
- (25) E. J. Greenhow, D. McNeil, and E. N. White, J. Chem. Soc., 986 (1952)
- Cabi, L. Anet and P. M. G. Bavin, *Can. J. Chem.*, **34**, 991 (1956).
 A. J. Sisti, *J. Org. Chem.*, **35**, 2670 (1970).
 E. D. Bergmann and I. Agranat, *Isr. J. Chem.*, **3**, 197 (1966); *Chem. Abstr.*, 64, 19513 (1966).
- (a) J. Rouzaud, G. Cauquil, and J. Boyer, Bull. Soc. Chim. Fr., 583 (1967); (29)(b) J. Rouzaud, R. Perz, J. Boyer, and G. Cauquil, C. R. Acad. Sci., Ser. C. 266. 990 (1968).
- (30) E. Ciar, J. F. Guye-Vuilleme, and J. F. Stephen, Tetrahedron, 20, 2107 (1964).
- K. Suzuki, T. Maeda, N. Nawa, and Y. Soda, Bull. Chem. Soc. Jpn., 35, 1299 (1962); Chem. Abstr., 58, 5588 (1963). (31)
- (32) V. G. Shubin, D. V. Korchagina, and G. A. Koptyug, Izv. Akad. Nauk SSSR, Ser. Khim., 1201 (1969); Chem. Abstr., 71, 49636 (1969)
- (33) D. J. Cram and D. R. Wilson, J. Am. Chem. Soc., 85, 1249 (1963).
 (34) F. Nerdel, G. Blume, and P. Weyerstahl, Tetrahedron Lett., 3867 (1969)
- (35) (a) C. J. Collins, D. N. Hess, R. H. Mayor, G. M. Toffel, and A. R. Jones, J. Am. Chem. Soc., 75, 397 (1953); (b) C. J. Collins, J. G. Burr, and D. N. Hess, *ibid.*, 73, 5176 (1951); (c) F. A. L. Anet and P. M. G. Bavin, Can. J. Chem., 38, 240 (1960).
- C. J. Collins, J. Am. Chem. Soc., 70, 2418 (1948). (36)
- (a) A. Mathieu and J. Boyer, C. R. Acad. Sci., Ser. C, 267, 1078 (1968);
 (b) J. Rouzaud, G. Cauquil, A. Mathieu, and J. Boyer, Bull. Soc. Chim. Fr., (37) 4851 (1968)
- (38) J. Rouzaud, G. Cauquil, and J. Boyer, C. R. Acad. Sci., Ser. C, 249, 1523 (1959). (39) W. E. Parham and L. J. Czuba, *J. Am. Chem. Soc.*, **90,** 4030 (1968).
- (40) C. D. Gutsche, Org. React., 8, 364 (1954).
- (41) H. O. House, E. J. Grubbs, and W. F. Gannon, J. Am. Chem. Soc., 82, 4099 (1960)
- A. Marshall and J. J. Partridge, J. Org. Chem., 33, 4090 (1968).
 R. F. Schultz, E. D. Schultz, and J. Cochran, J. Am. Chem. Soc., 62, 2902 (43)(1940). B. Elstert and M. A. El-Chahawi, *Monatsh. Chem.*, **98.** 941 (1967).
- (44)(45) N. Barton, J. W. Cook, J. D. Loudon, and J. McMillan, J. Chem. Soc., 1079
- (1949).
 (46) B. M. Vittimberga, *Tetrahedron Lett.*, 2383 (1965).
 (47) (a) P. N. Cote and B. M. Vittimberga, *J. Am. Chem. Soc.*, 93, 276 (1971); (b) P. N. Cote and B. M. Vittimberga, *Tetrahedron Lett.*, 2397 (1972).
- I. A. D'yakonov and T. V. Domareva, Zh. Obshch. Khim., 29, 3098 (1959); (48) Chem. Abstr., 54, 14211 (1960). (49) D. Y. Curtin, J. A. Kampmeier, and B. R. O'Connor, J. Am. Chem. Soc.,
- 87, 863 (1965).
- (50) B. Kaminska and T. Mazonski, Rocz. Chem., 40, 65 (1966); Chem. Abstr., 65. 3809 (1966).
- (1960).
 (51) (a) D. N. Chatterjee, *Curr. Sci.*, **33**, 582 (1964); *Chem. Abstr.*, **61**, 14598 (1964); (b) D. N. Chatterjee and T. K. Banerji, *Curr. Sci.*, **42**, 853 (1973); *Chem. Abstr.*, **80**, 70580 (1974); (c) D. N. Chatterjee and S. R. Chakravorty, *Curr. Sci.*, **39**, 512 (1970); *Chem. Abstr.*, **74**, 53329 (1971); (d) D. N. Chatterjee and S. R. Chakravorty, *J. Indian Chem. Soc.*, **51**, 507 (1974).
 (50) (c) S. C. Soc. Soc. Abs. A Mitro. *I. Indian Chem. Soc.*, **51**, 507 (1974).
- (a) S. C. Sen Gupta and A. Mitra, J. Indian Chem. Soc., 40, 615 (1963); (52)(a) 5. 0.561 (dopta and F. Midd, 49, 1001 (1972).
 (b) A. Mitra and S. B. Das, *ibid.*, 49, 1001 (1972).
 S. C. Sen Gupta and P. K. Sen, *J. Indian Chem. Soc.*, 39, 660 (1962).
 S. C. Sen Gupta and P. K. Sen, *J. Indian Chem. Soc.*, 39, 815 (1962).
 S. C. Sen Gupta and P. K. Sen, *J. Indian Chem. Soc.*, 39, 815 (1962).
- (53)
- (55) M. Mousseron, R. Jacquier, and H. Christol, C. R. Acad. Sci., Ser. C, 243, 1532 (1956).
- (56) H. Christol, R. Jacquier, and M. Mousseron, Bull. Soc. Chim. Fr., 11 (1959).
- W. S. Johnson and R. B. Kinnel, J. Am. Chem. Soc., 88, 3861 (1966). (57)
- (58) (a) A. Regnault, P. Canonne, and L. C. Leitch, *Tetrahedron Lett.*, 355 (1968); (b) A. Regnault and P. Canonne, *Tetrahedron*, 25, 2349 (1969).
- D. Hausigk, Tetrahedron Lett., 5263 (1969).
- (60)E. A. Viktorova, N. I. Shuikin, I. E. Pokrovskaya, and S. L. Aleksandrova, Neftekhimiya, 1, 648 (1961); Chem. Abstr., 57, 11119 (1962). (61) K. M. Shadmanov, Dokl. Akad. Nauk Uzb. SSR, 40 (1959); Chem. Abstr.,
- (61) Kim Joseph And C. S. Kadyrov, Uzb. Khim. Zh., 45 (1960); Chem. Abstr., 55, 13394 (1961).
- (63) M. F. Ansell and M. E. Selleck, J. Chem. Soc., 1238 (1956).
- (64) M. F. Ansell and B. Gadsby, J. Chem. Soc., 2994 (1959).
 (65) J. C. Chottard and M. Julia, Bull. Soc. Chim. Fr., 3700 (1968).
- (66) M. Julia, J. C. Chottard, and J. J. Basselier, Bull. Soc. Chim. Fr., 3037 (1966).
- (67) M. Julia and F. Le Goffic, Bull. Soc. Chim. Fr., 1129 (1964).
- (68) W. L. Mosby, J. Org. Chem., 19, 294 (1954).

- (69) M. F. Ansell and S. S. Brown, *J. Chem. Soc.*, 3956 (1958).
 (70) M. F. Ansell and J. W. Ducker, *J. Chem. Soc.*, 206 (1961).
 (71) J. C. Bardhan, K. C. Bhattacharyya, and S. Bala, *Indian J. Chem.*, 5, 100 (1967)
- (72) (a) R. Robinson and J. Walker, J. Chem. Soc., 192 (1936); (b) ibid., 60

(1937)

- (73) R. Robinson and E. Schlittler, J. Chem. Soc., 1288 (1935).
 (74) S. I. Zav'yalov, V. I. Gunar, and L. F: Kudryavtseva, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 2009 (1960); Chem. Abstr., **55**, 12374 (1961). (75) R. J. Hayward and C. C. Leznoff, *Tetrahedron*, **27**, 5115 (1971). (76) G. Darzens and A. Levy, C. R. Acad. Sci., Ser. C, **200**, 2187 (1935).

- (77) G. Darzens and A. Levy, C. R. Acad. Sci., Ser. C, 202, 213 (1935).
 (78) G. Darzens and A. Levy, C. R. Acad. Sci., Ser. C, 201, 730 (1935).
 (79) S. M. Mukherji and N. K. Bhattacharyya, J. Org. Chem., 17, 1202 (1952).
 (80) D. Hausigk and G. Koelling, Chem. Ber., 101, 469 (1968). (81) K. M. Shadmanov, Dokl. Akad. Nauk Uzb. SSR, 20, 26 (1963); Chem. Abstr., 61, 4286 (1964).
- (82) D. Lipkin, F. R. Galiano, and R. W. Jordan, Chem. Ind. (London), 1657 (1963).
- (83) R. Filler and H. A. Leipold, J. Org. Chem., 27, 4440 (1962).
 (84) Y. Oikawa and O. Yonemitsu, *Tetrahedron*, 30, 2653 (1974).
 (85) J. C. Chottard and M. Julia, *Tetrahedron*, 28, 5615 (1972).
- (86) D. I. Davies and C. Waring, J. Chem. Soc., C, 1865 (1968).
 (87) (a) L. A. Erivanskaya, N. L. Komissarova, G. A. Shevtsova, and A. F. Plate, Neftekhimiya, 9, 513 (1969); Chem. Abstr., 71, 124044 (1969); (b) N. I. Shuikin, L. A. Erivanskaya, and A. H. Yang, Dokl. Akad. Nauk SSSR, 133, 1125 (1960); Chem. Abstr., 54, 24597 (1960); (c) G. A. Shevtsova, L. A. Erivanskaya, and A. F. Plate, Neftekhimiya, 13, 509 (1973); Chem. Abstr., 79, 126135 (1973); (d) T. S. Shakarashvili and N. G. Bekauri, Soobshch. Akad. Nauk Gruz. SSR, 40, 81 (1965); Chem. Abstr., 64, 5017 (1966).
- (a) N. I. Shuikin, L. A. Erivanskaya, N. L. Komissarova, and A. H. Yang,
 Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 327 (1962); *Chem. Abstr.,* 57,
 11119 (1962); (b) N. I. Shuikin, L. A. Erivanskaya, A. H. Yang, and L. P.
 Romanova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1469 (1963); *Chem. Abstr.,* 59, 15230 (1963)
- (89) N. I. Shuikin, L. A. Erivanskaya, and A. H. Yang, *Zh. Obshch. Khim.*, 32, 823 (1962); *Chem. Abstr.*, 58, 4489 (1963).
- (90) (a) J. Lockett and W. F. Short, J. Chem. Soc., 787 (1939); (b) A. L. Green
- and D. H. Hey, *ibid.*, 4306 (1954). (91) P. M. G. Bavin, *Can. J. Chem.*, **38**, 1227 (1960). (92) A. Rahman, A. T. Vasquez, and A. A. Khan, *J. Org. Chem.*, **28**, 3571 (1963).
- (93) F. M. Beringer, L. L. Chang, A. N. Fenster, and R. R. Rossi, Tetrahedron, 25, 4339 (1969).
- R. D. Haworth, J. Chem. Soc., 1125 (1932).

- (94) R. D. Haworn, J. Chem. Soc., 1120 (1932).
 (95) P. Cagniant and P. Cagniant, Bull. Soc. Chim. Fr., 1448 (1958).
 (96) E. Buchta and C. W. Schaefer, Chem. Ber., 97, 1308 (1964).
 (97) N. L. Drake and W. C. McVey, J. Org. Chem., 4, 464 (1939).
 (98) G. A. R. Kon and F. C. J. Ruzicka, J. Chem. Soc., 187 (1936).
 (99) J. P. Dillenschneider and J. C. Maire, Bull. Soc. Chim. Fr., 2606 (1964).
 (100) (a) A. Cohen, J. W. Cook, C. L. Hewett, and A. Girard, J. Chem. Soc., 663 (1964). (1934); (b) A. Cohen, J. W. Cook, and C. L. Hewett, ibid., 445 (1935); (c) . Cohen, J. W. Cook, and C. L. Hewett, ibid., 52 (1936).
- (101) J. Lematre and J. Soulier, C. R. Acad. Sci., Ser. C, 265, 199 (1967).
 (102) L. F. Fieser and W. H. Daudt, J. Am. Chem. Soc., 63, 782 (1941).
- (103) J. Kuthan, A. Kozlik, and F. Petru, Collect. Czech. Chem. Commun., 33, 614 (1968); Chem. Abstr., 68, 69149 (1968). (104) R. D. Haworth and C. R. Mavin, J. Chem. Soc., 2720 (1932). (105) R. D. Haworth and F. M. Bolam, J. Chem. Soc., 2248 (1932).

- (106) E. Ghigi, A. Drusiani, L. Plessi, and V. Cavrini, Gazz. Chim. Ital., 98, 795 (1968).
- (107) A. Drusiani, L. Plessi, V. Cavrini, and A. Righini, *Atti Mem. Accad. Patavina Sci., Lett. Arti*, 82, 607 (1969–70); *Chem. Abstr.*, 78, 97367 (1973).
 (108) H. Stobbe and A. Lenzner, *Justus Liebigs Ann. Chem.*, 380, 93 (1911).
- (109) W. S. Johnson and A. Goldman, J. Am. Chem. Soc., 66, 1030 (1944).
 (110) W. S. Johnson, A. Goldman, and W. P. Schneider, J. Am. Chem. Soc., 67, 1357 (1945).
- (111) G. H. Daub and W. S. Johnson, J. Am. Chem. Soc., 72, 501 (1950).
- (112) G. L. Hewett, J. Chem. Soc., 585 (1942).
 (113) D. K. Banerjee and G. Bagavant, Proc. Indian Acad. Sci., Sect. A, 53, 113 (1961); Chem. Abstr., **55**, 17599 (1961). (114) W. S. Johnson and R. P. Graber, *J. Am. Chem. Soc.*, **72**, 925 (1950).
- (115) S. M. Abel-Wahhab, L. S. El-Assal, N. Ramses, and A. H. Shehab, J. Chem. Soc. C, 863 (1968).
- (116) W. I. Awad, F. G. Baddar, and M. I. B. Selim, J. Chem. Soc., 1854 (1962).
- (117) S. M. Abel-Wahhab, N. R. El-Rayyes, F. M. El-Fehail, and M. F. El-Newalhy, J. Prakt. Chem., 315, 375 (1973).
 (118) W. I. Awad, F. G. Baddar, F. A. Fouli, S. M. A. Omran, and M. I. B. Selim,
- J. Chem. Soc. C, 507 (1968).

- (119) G. Haberland, *Chem. Ber.*, **69**, 1380 (1936).
 (120) G. Haberland and E. Blanke, *Chem. Ber.*, **70**, 169 (1937).
 (121) I. E. Ochlai, T. Okamoto, M. Sekijima, M. Nishikawa, and K. Shono, *Pharm.*
- Bull., 5, 48 (1957); Chem. Abstr., 51, 16387 (1957). (122) H. Plimmer, W. F. Short, and P. Hill, J. Chem. Soc., 694 (1938). (123) M. S. Newman and A. S. Hussey, J. Am. Chem. Soc., 69, 3023 (1947). (124) W. J. Gensler, S. C. Chakravarti, and F. Johnson, J. Org. Chem., 27, 857
- (1962).
- (1502).
 (125) S. K. Dasgupta and P. C. Antony, *Tetrahedron Lett.*, 4997 (1966).
 (126) M. F. Ansell and D. H. Hey, *J. Chem. Soc.*, 1683 (1950).
 (127) B. K. Menon, *J. Chem. Soc.*, 1775 (1936).
 (128) M. F. Ansell and D. H. Hey, *J. Chem. Soc.*, 2874 (1950).

- (129) R. Kirchlechner, W. Rogalskii, and J. Seubert, German Offen. 2 141 947 (1973); *Chem. Abstr.*, **78**, 147664 (1973).
 (130) (a) A. U. Rhaman and O. L. Tombesi, *Chem. Ber.*, **99**, 1805 (1966); (b) A.

- (1) C. A. Hanman, O. L. Tombesi, and C. Perl, *Chem. Ind*. (London), 691 (1965).
 (1) L. Tombesi, and C. Perl, *Chem. Ind*. (London), 691 (1965).
 (131) E. Buchta and S. Buchholz, *Justus Liebigs Ann. Chem.*, 688, 40 (1965).
 (132) J. C. Bardhan, D. Nasipuri, and R. N. Adhya, *J. Chem. Soc.*, 355 (1956)
 (133) P. Mueller, J. Seres, K. Steiner, S. E. Helali, and E. Hardegger, *Helv. Chim. Acta*, 57, 790 (1974).
- (134) D. K. Banerjee and S. K. Das Gupta, J. Indian Chem. Soc., 36, 223 (1959).
- (135) W. E. Hahn and L. Wojciechowski, Rocz. Chem., 38, 983 (1964); Chem.

- Abstr., 61, 11988 (1964).
- (136) D. Nasipuri and D. N. Roy, J. Chem. Soc., 3361 (1961).
 (137) D. Nasipuri, Chem. Ind. (London), 795 (1956).
- (138) G. P. Crowley and R. Robinson, J. Chem. Soc., 2001 (1938).
- (139) L. F. Fleser and E. B. Hershberg, J. Am. Chem. Soc., 57, 1851 (1935).
 (140) P. Canonne, P. Holm, and L. C. Leitch, Can. J. Chem., 45, 2152 (1967).
 (141) C. Djerassi and G. R. Pettit, J. Org. Chem., 22, 393 (1957).

A. J. Floyd, S. F. Dyke, and S. E. Ward

- (142) K. G. Rutherford and M. S. Newman, J. Am. Chem. Soc., 79, 213 (1957).
 (143) C. Chin, Sci. Sin., 5, 49 (1956); Chem. Abstr., 51, 6583 (1957).
 (144) J. C. Bardhan and D. Nasipuri, J. Chem. Soc., 350 (1956).

- (145) J. C. Bardhan, R. N. Adhya, and K. C. Bhattacharyya, J. Chem. Soc., 1346 (1956).
- (146) D. Nasipuri and M. Guha, J. Sci. Ind. Res., Sect. B, 21, 96 (1962); Chem. Abstr., 57, 12400 (1962).
- (147) D. Nasipuri and A. C. Chaudhuri, J. Chem. Soc., 2579 (1958).
- (148) (a) D. Nasipuri, *Chem. Ind.* (*London*), 1389 (1956); (b) D. Nasipuri and K. K. Biswas, *J. Indian Chem. Soc.*, **45**, 603 (1968).
- (149) P. Kalnins and E. Kalnina, Latv. PSR Zinat. Akad. Vestis, 93 (1956); Chem.

- (199) F. Kalmis and E. Kalmia, *Law, PSP 2 Int. Akab. Vesits*, 93 (1996), *Chem. Abstr.*, 52, 5354 (1958).
 (150) T. Severin, B. Brueck, and P. Adhikary, *Chem. Ber.*, 99, 3097 (1966).
 (151) E. C. du Feu, F. J. McQuillin, and R. Robinson, *J. Chem. Soc.*, 53 (1937) (152) (a) "Chemistry of Carbon Compounds", Vol. 2, E. H. Rodd, Ed., Elsevier, Amsterdam, 1953, p 274; (b) R. Levine and W. C. Fernelius, *Chem. Rev.*, **54**, 506 (1954); (c) E. D. Bergmann, D. Ginsberg, and R. Pappo, *Org. React.*, **10**, 179 (1959).
- (153) (a) J. W. Cornforth, "Progress in Organic Chemistry", Vol. 3, J. W. Cook, Ed., Butterworth, London, 1955, p 1; (b) I. V. Torgov, "The Chemistry of Natural Products", Vol. 2, Butterworth, London, 1963, p 525.
 (154) W. Nagata, S. Hirai, T. Terasawa, I. Kikkawa, and K. Takeda, *Chem. Pharm.* Bull, 9, 756 (1961); Chem. Abstr., 57, 7334 (1962).
 (155) (b) B. Kitherage and A. Bu, Core of A. Bu, Co
- (155) (a) J. P. Kutney, W. McCrae, and A. By, Can. J. Chem., 40, 982 (1962);
 (b) Shionogi and Co. Ltd., British Patent 873 019 (1959); Chem. Abstr., 56, 2399 (1962).
- (156) W. S. Johnson, J. Szmuszkovicz, E. R. Rogier, H. I. Hadler, and H. Wynberg, *J. Am. Chem. Soc.*, **78**, 6285 (1956).
 (157) G. Stork and J. W. Schulenberg, *J. Am. Chem. Soc.*, **78**, 250 (1956).
 (158) A. K. Ghosh, *Sci. Cult.*, **29**, 514 (1963); *Chem. Abstr.*, **60**, 11960 (1964).
- (159) (a) C. Egli, J. Seres, K. Steiner, S. E. Helali, and E. Hardegger, Helv. Chim. Acta, 57, 796 (1974); (b) K. Steiner, C. Egli, N. Rigassi, S. E. Helali, and
- E. Hardegger, *Ibid.*, **57**, 1137 (1974). (160) G. Stork, A. Brizzolara, H. Landesmann, J. Szmuszkovicz, and R. Terrell, *J. Am. Chem. Soc.*, **85**, 207 (1963). (161) A. J. Birch and R. Robinson, *J. Chem. Soc.*, 501 (1944).
- (162) D. K. Banerjee, S. Chatterjee, and S. P. Bhattacharya, J. Am. Chem. Soc., 77, 408 (1955).
- (163) D. A. Peak and R. Robinson, J. Chem. Soc., 1581 (1937).
 (164) E. D. Bergmann, R. Ikan, and H. Weiler-Feilchenfeld, Bull. Soc. Chim. Fr., 290 (1957).
- (165) E. Buchta and W. Bayer, Naturwissenshaften, 45, 440 (1958) (166) G. Stork, S. D. Darling, I. T. Harrison, and P. S. Wharton, J. Am. Chem. Soc., 84, 2018 (1962).
- (167) E. Brown and M. Ragault, C. R. Acad. Sci., Ser. C, 270, 747 (1970).

- (168) G. Stork, *Pure Appl. Chem.*, 9, 131 (1964).
 (169) M. Ohashi, T. Maruishi, and H. Kakisawa, *Tetrahedron Lett.*, 719 (1968).
 (170) A. H. A. Tinnemans and W. H. Laarhoven, *Tetrahedron Lett.*, 817 (1973).
- (171) K. Dimroth, H. Kroke, and K. Wolf, Justus Liebigs Ann. Chem., 678, 202
- (1964).
- (172) A. T. Balaban, W. Schroth, and G. Fisher, Adv. Heterocycl. Chem., 10, 241 (1969).
- (173) M. Muelly, J. Zsindely, and H. Schmid, Chimia, 28, 62 (1974).
- (174) C. Jutz and R. M. Wagner, Angew. Chem., Int. Ed. Engl., 11, 315 (1972).
 (175) M. T. Bogert, Science, 77, 289 (1933).
- (176) J. W. Cook and C. L. Hewett, J. Chem. Soc., 1098 (1933).
- (177) M. Tada and H. Shinozaki, Chem. Lett., 1111 (1972); Chem. Abstr., 78, 717 (1973)
- (178) D. Papa, D. Perlmann, and M. T. Bogert, J. Am. Chem. Soc., 60, 319 (1938).

(182) D. Perlmann, D. Davidson, and M. T. Bogert, J. Org. Chem., 1, 288 (1936).
 (183) S. Hara and Y. Takushigo, Chem. Pharm. Bull. 8, 976 (1960); Chem. Abstr.,

(188) H. Christol, A. Gaven, Y. Pietrasanta, and J. L. Vernet, Bull. Soc. Chim. Fr., 4510 (1971).
 (189) J. C. Bardhan and R. N. Adhya, J. Chem. Soc., 260 (1956).
 (190) J. W. Cook, C. L. Hewett, and A. M. Robinson, J. Chem. Soc., 168 (1939).

(194) J. C. Bardhan and S. C. Sengupta, *J. Chem. Soc.*, 2520 (1932).
 (195) R. D. Haworth, C. R. Mavin, and G. Sheldrick, *J. Chem. Soc.*, 454 (1934).

(196) B. C. Pal, J. Am. Chem. Soc., 77, 3397 (1955).
 (197) M. Ray, J. C. Bardhan, and K. C. Bhattacharyya, J. Chem. Soc., 1344

(198) B. C. Pal, J. Sci. Ind. Res., Sect. B, 17, 124 (1958); Chem. Abstr., 52,

(200) S. M. Mukherji, O. P. Vig, and N. K. Maheshwary, J. Indian Chem. Soc.,

(199) F. D. Popp and W. E. McEwen, Chem. Rev., 58, 321 (1958).

(191) M. Julia and R. Labia, *Tetrahedron Lett.*, 501 (1969).
 (192) M. Julia and R. Labia, *C. R. Acad. Sci.*, Ser. C, 265, 1492 (1967).
 (193) M. Julia and R. Labia, *Bull. Soc. Chim. Fr.*, 4151 (1972).

- (179) A. Higginbottom, P. Hill, and W. F. Short, J. Chem. Soc., 263 (1937).
- (180) R. Grewe, *Chem. Ber.*, **72**, 1314 (1939).
 (181) D. Perlmann and M. T. Bogert, *J. Am. Chem. Soc.*, **59**, 2534 (1937).

(183a) R. Grewe and A. Mondon, Chem. Ber., 81, 279 (1948).

(184) R. D. Haworth and R. L. Barker, *J. Chem. Soc.*, 1299 (1939). (185) R. D. Haworth and B. P. Moore, *J. Chem. Soc.*, 633 (1946). (186) M. T. Bogert, D. Davidson, and P. M. Apfelbaum, J. Am. Chem. Soc., 56, 959 (1934). (187) H. Christol, Y. Pietrasanta, and J. L. Vernet, *C. R. Acad. Sci., Ser. C*, **270**,

57, 7191 (1962).

1477 (1970).

(1956)

18314 (1958).

- 34, 9 (1957). (201) O. P. Vig, S. S. Sandhu, and S. M. Mukherji, *J. Indian Chem. Soc.*, 34, 81 (1957)
- (202) U. R. Ghatak, A. K. Banerjee, N. R. Chatterjee, and J. Chakravarty, *Tetrahedron Lett.*, 247 (1967).
 (203) R. G. Harvey and M. Halonen, *Can. J. Chem.*, 45, 2630 (1967).
- (203) R. G. Harvey and M. Halonen, *Can. J. Chem.*, **45**, 2630 (1967).
 (204) N. K. Kochetkov, E. E. Nifan't'ev, and V. N. Shibaev, *Zh. Obshch. Khim.*, **30**, 2275 (1960); *Chem. Abstr.*, **55**, 8366 (1961).
 (205) C. L. Hewett, *J. Chem. Soc.*, **50** (1936).
 (206) J. A. K. Quartey, *J. Indian Chem. Soc.*, **37**, 731 (1960).
 (207) G. N. Walker, *J. Am. Chem. Soc.*, **79**, 3508 (1957).
 (208) G. N. Walker, *J. Am. Chem. Soc.*, **79**, 1772 (1957).
 (209) G. N. Walker, *J. Am. Chem. Soc.*, **80**, 645 (1958).

- (210) N. N. Saha, P. Bagchi, and P. C. Dutta, J. Am. Chem. Soc., 77, 3408 (1955).
 (211) C. D. Gutsche and W. S. Johnson, J. Am. Chem. Soc., 68, 2239 (1946).
- (212) W. E. Parham, E. L. Wheeler, and R. M. Dodson, J. Am. Chem. Soc., 77,
- 1166 (1955).
- (213) R. Lok-Tung, Diss. Abstr. B, 33, 4196.
- (214) C. Schmidt and J. Thazhuthaveetil, *Can. J. Chem.*, **51**, 3620 (1973).
 (215) M. Tada, H. Saiki, K. Miura, and H. Shinozaki, *Chem. Commun.*, 55 (1975).
 (216) R. Pschorr, *Chem. Ber.*, **29**, 496 (1896).
- (217) E. A. Nodiff, A. J. Saggiomo, Masafu Shinbo, E. H. Chen, H. Otomasu, Y. Kondo, T. Ki Kuchi, B. L. Verma, S. Matuura, K. Tanabe, M. P. Tyagi, and S. Morosawa, J. Med. Chem., 15, 775 (1972).
- (218) G. H. Williams, "Homolytic Aromatic Substitution", Pergamon Press, Oxford, 1960, p 80.
- (219) R. A. Abramovitch and G. Tertzakian, *Can. J. Chem.*, **43**, 940 (1965). (220) E. Gellert and B. Chauncy, Australian Patent 417 997 (1971); *Chem. Abstr.*, 76, 59322 (1972).
- (221) B. Chauncy and É. Gellert, Aust. J. Chem., 23, 2503 (1970)
- (222) R. M. Elofson and F. F. Gadallah, J. Org. Chem., 36, 1769 (1971).
 (223) R. A. Abramovitch and A. Robson, J. Chem. Soc. C, 1101 (1967).
- (224) T. R. Govindachari, I. S. Ragade, and N. Viswanathan, J. Chem. Soc., 1357
- (1962).
 (225) T. Sasaki, K. Kanematsu, and S. Ose, Yakugaku Zasshi, 84, 977 (1964); Chem. Abstr., 62, 3987 (1965).

- (226) D. H. Hey and R. A. J. Long, J. Chem. Soc., 2254 (1959).
 (227) D. F. De Tar and T. E. Whiteley, J. Am. Chem. Soc., 79, 2498 (1957).
 (228) H. Sieper, Chem. Ber., 100, 1646 (1967).
 (229) A. Schonberg, "Preparative Organic Photochemistry", 2nd ed, A.
- Schonberg, G. O. Schenck, O. A. Neumueller, Ed, Springer-Verlag, Berlin, 1968, pp 126, 138. (230) R. O. Kan, "Organic Photochemistry", McGraw-Hill, New York, 1966, p
- 219. (231) P. G. Sammes, *Q. Rev., Chem. Soc.*, **24,** 37 (1970).
- (231) F. G. Sallines, G. nev., *chem. Soc.*, *24*, or (1975).
 (232) T. Kametani and K. Fukumoto, *Acc. Chem. Res.*, *5*, 212 (1972).
 (233) R. E. Buckles, *J. Am. Chem. Soc.*, *77*, 1040 (1955).

- (233) R. E. Buckles, J. Am. Chem. Soc., 17, 1040 (1955).
 (234) C. O. Parker and P. E. Spoerri, Nature (London), 166, 603 (1950).
 (235) C. S. Wood and F. B. Mallory, J. Org. Chem., 29, 3373 (1964).
 (236) E. N. Morgan, P. J. Palmer, L. Kruszynska, and W. R. N. Williamson, J. Chem. Soc., 3887 (1965). (237) A. Novelli, J. D. Bonafede, and M. C. G. de Barrio, Tetrahedron Lett., 613
- (1968). Y. Fujiwara, I. Moritani, M. Matsuda, and S. Teranishi, *Tetrahedron Lett.*, (238)
- 633 (1968). (239) O. H. Wheeler and H. N. Battle de Pabon, J. Org. Chem., 30, 1473 (1965).
- (240) W. M. Moore, D. D. Morgan, and F. R. Stermitz, J. Am. Chem. Soc., 85, 829 (1963).
- (241) F. B. Mallory, C. S. Wood, and J. T. Gordon, J. Am. Chem. Soc., 86, 3094 (1964).

- (242) H. E. Zimmerman, Angew. Chem., Int. Ed. Engl., 8, 1 (1969).
 (243) A. Gilbert, Photochemistry, 5, 499 (1974).
 (244) A. Bromberg, K. A. Muszkat, and E. Fischer, Chem. Commun., 1352 (1968); A. Brombert and K. A. Muszkat, J. Am. Chem. Soc., 91, 2860 1969).
- (245) A. Bromberg, K. A. Muszkat, and E. Fischer, *Isr. J. Chem.*, **10**, 765 (1972); *Chem. Abstr.*, **78**, 71037 (1973).
- (246) D. Banes, J. Assoc. Off. Agric. Chem., 44, 323 (1961); Chem. Abstr., 55, 23464 (1961).
- (247) H. W. Knoche and A. M. Gawienowski, *Endocrinology*, **71**, 514 (1962); *Chem. Abstr.*, **58**, 11650 (1963).
 (248) T. D. Doyle, N. Filipescu, W. R. Benson, and D. Banes, *J. Am. Chem. Soc.*, *Const. (Lett.)*
- 92, 6371 (1970).
- (249) Th. J. H. M. Cuppen and W. H. Laarhoven, J. Am. Chem. Soc., 94, 5914 (1972).

- (250) H. Gusten and L. Klasinc, *Tetrahedron*, 24, 5499 (1968).
 (251) K. A. Muszkat and E. Fischer, *J. Chem. Soc. B*, 662 (1967).
 (252) M. Scholz, F. Dietz, and M. Mühlstädt, *Z. Chem.*, 7, 329 (1967).
- (253) W. H. Laarhoven, Th. J. H. M. Cuppen, and R. J. F. Nivard, Tetrahedron, 26, 4865 (1970).
- (254) E. V. Blackburn and C. J. Timmons, J. Chem. Soc. C, 172 (1970)
- (255) F. B. Mallory and C. W. Mallory, J. Am. Chem. Soc., 94, 6041 (1972).
 (256) M. S. Newman and H. M. Chung, J. Org. Chem., 39, 1036 (1974).
 (257) H. Jungmann, H. Guesten, and D. Schultz-Frohlinde, Chem. Ber., 101, 2690 (1968)

- (258) W. Carruthers and H. N. M. Stewart, J. Chem. Soc. C, 556 (1967).
 (259) K. L. Servis and K.-N. Fang, *Tetrahedron Lett.*, 967 (1968).
 (260) E. V. Blackburn, C. V. Loader, and C. J. Timmons, J. Chem. Soc. C, 1576 (1968). (261) R. G. F. Giles and M. V. Sargent, *Chem. Commun.*, 215 (1974)

- (261) H. G. F. Glies and M. V. Sargent, *Chem. Commun.*, 215 (1974).
 (262) E. J. Levi and M. Orchin, *J. Org. Chem.*, **31**, 4302 (1966).
 (263) D. J. Collins and J. J. Hobbs, *Chem. Ind. (London)*, 1725 (1965).
 (264) D. J. Collins and J. J. Hobbs, *Aust. J. Chem.*, **20**, 1905 (1967).
 (265) S. M. Kupchan and H. C. Wormser, *J. Org. Chem.*, **30**, 3792 (1965).
- (266) R. N. Warrener and J. B. Bremner, *Rev. Pure Appl. Chem.*, **16**, 117 (1966).
 (267) P. S. Pinkey, G. A. Nesty, R. F. Wiley, and C. S. Marvel, *J. Am. Chem. Soc.*,

- 58. 972 (1936).
- (268) P. S. Pinkey, G. A. Nesty, D. E. Pearson, and C. S. Marvel, J. Am. Chem. Soc., 59, 2666 (1937).

 - (269) B. Chauncy and E. Gellert, Aust. J. Chem., 22, 993 (1969).
 (270) M. Pailer, H. Berner, and S. Makleit, Monatsh. Chem., 98, 1603 (1967).
 (271) S. M. Kupchan and H. C. Wormser, Tetrahedron Lett., 359 (1965).

 - (272) M. V. Sargenar and C. J. Timmons, J. Chem. Soc., 5544 (1964).
 (273) K. Ichimura and S. Watanabe, *Tetrahedron Lett.*, 821 (1972).
 (274) R. Srinivasan and J. N. C. Hsu, J. Am. Chem. Soc., 93, 2816 (1971).
 - (275) S. Watanabe and K. Ichimura, Chem. Lett., 35 (1972); Chem. Abstr., 76, 98759 (1972). (276) G. Rio and J. C. Hardy, *Bull. Soc. Chim. Fr.*, 3578 (1970). (277) G. Rio and D. Masure, *Bull. Soc. Chim. Fr.*, 3232 (1971).

 - (278) S. D. Cohen, M. V. Mijovic, and G. A. Newman, Chem. Commun., 722 (1968)
- (1300)
 (279) M. Kojima and M. Maeda, *Chem. Commun.*, 386 (1970).
 (280) W. Templeton, *Chem. Commun.*, 1412 (1970).
 (281) T. D. Roberts, *Chem. Commun.*, 362 (1971).
 (282) D. Y. Curtin and R. P. Quirk, *Tetrahedron*, 24, 5791 (1968).
 (283) S. V. Kessar, R. Sood, U. K. Nadir, and M. Singh, *Chem. Commun.*, 316 (1969). (1969).
- (284) S. V. Kessar, S. Narula, S. S. Ghandi, and U. K. Nadir, Tetrahedron Lett., 2905 (1974).
- (285) M. Tiecco, Chem. Commun., 555 (1965).
- (286) D. I. Davies, D. H. Hey, and M. Tiecco, J. Chem. Soc., 7062 (1965).
- B. F. Bonini and M. Tiecco, *Gazz. Chim. Ital.*, **98**, 1792 (1966); *Chem. Abstr.*, **67**, 43581 (1967). (287)
- (288) M. Tiecco, Corsi Semin. Chim., 56 (1968); Chem. Abstr., 72, 31496 (1970). (289)
- A. L. Gatzke, R. A. Stairs, and D. G. M. Diaper, Can. J. Chem., 46, 3695 (1968)
- (290) W. E. Ohnesorge and J. D. Stuart, J. Am. Chem. Soc., 93, 4531 (1971).
- (291) V. D. Parker and A. Roulan, *Chem. Commun.*, 1567 (1970).
 (292) A. Roulan and V. D. Parker, *J. Org. Chem.*, **39**, 1014 (1974)
- (293) J. R. Falck, L. L. Miller, and F. R. Stermitz, J. Am. Chem. Soc., 96, 2981 (1974).
- J. P. Gesson, J. C. Jacquesy, and R. Jacquesy, Tetrahedron Lett., 4119 (294)(1974).
- (295) J. Gardent, Bull. Soc. Chim. Fr., 1049 (1962).
 (296) L. J. Kricka and A. Ledworth, J. Chem. Soc. Perkin Trans. 1, 294 (1973).

and D. H. Hey, *J. Chem. Soc.*, 1360 (1962); (c) D. I. Davies and C. Waring, *ibid.*, *C*, 2332 (1968).

79, 1995 (1957); (b) R. E. Ireland and R. C. Kierstead, J. Org. Chem., 27, 703 (1962); (c) G. I. Kiprianov and L. M. Kutsenko, *Zh. Obshch. Khim.*, **34**, 3928 (1964); *Chem. Abstr.*, **62**, 10390 (1965); (d) R. E. Ireland and R. C. Kierstead, *J. Org. Chem.*, **31**, 2543 (1966).

(303) E. D. Bergmann and J. Szmuszkovicz, J. Am. Chem. Soc., 75, 3226 (1953).
 (304) Y. Klibansky and D. Ginsburg, *J. Chem. Soc.*, 1293 (1957).
 (305) (a) W. S. Johnson, R. G. Christiansen, and R. E. Ireland, *J. Am. Chem. Soc.*,

(306) J. W. Cook, C. L. Hewett, and C. A. Lawrence, J. Chem. Soc., 71 (1936).
 (307) R. Ghosh, Sci. Cult., 3, 55 (1937); Chem. Abstr., 31, 7868 (1937).
 (308) W. E. Bachmann and E. J. Fornefeld, J. Am. Chem. Soc., 72, 5529 (1950).

(309) D. Ginsburg and R. Pappo, J. Chem. Soc., 938 (1951).
(310) E. Buchta and H. Ziener, Justus Liebigs Ann. Chem., 601, 155 (1956).
(311) J. G. Murphy, J. Org. Chem., 26, 3104 (1961).
(312) W. L. Nelson and D. D. Miller, J. Med. Chem., 13, 807 (1970).
(313) D. Ginsburg and R. Pappo, J. Chem. Soc., 516 (1951).
(314) S. Bien, U. Michael, and L. Zamir, J. Chem. Soc. C, 115 (1967).
(315) S. Yaroslavsky and E. D. Bergmann, Tetrahedron, 11, 158 (1960).
(316) D. Nasipuri and J. Roy, J. Chem. Soc., 1571 (1960).
(316) D. Nasipuri and J. Roy, J. Chem. Soc., 1571 (1960).

(317) W. L. Bencze, German Offen. 1 912 552 (1969); Chem. Abstr., 72, 78770

(318) D. N. Chatterjee and S. P. Bhattacharjee, *Tetrahedron*, 27, 4153 (1971).
 (319) P. Besinet, R. Fraise, R. Jacquier, and P. Viallefont, *Bull. Soc. Chim. Fr.*,

(320) P. Pallitzsch, German (East) Patent 104 286 (1974); Chem. Abstr., 81,

(322) I. R. Sherwood, W. F. Short, and J. Woodcock, J. Chem. Soc., 322 (1936).
 (323) C. K. Bradsher, E. D. Little, and D. J. Beavers, J. Am. Chem. Soc., 78, 2153

(327) C. K. Bradsher and R. W. Wert, J. Am. Chem. Soc., 62, 2806 (1940). (328) C. K. Bradsher and W. J. Jackson, Jr., J. Am. Chem. Soc., 76, 4140 (1954). (329) U. Feist, G. Heinze, and H. G. Koennecke, J. Prakt. Chem., 36, 238 (1967).
 (330) C. K. Bradsher, F. C. Brown, and P. H. Leake, J. Am. Chem. Soc., 79, 1471

(1957).
(331) C. K. Bradsher and D. J. Beavers, J. Org. Chem., 22, 1738 (1957).
(332) C. K. Bradsher, L. E. Beavers, and N. Tokura, J. Am. Chem. Soc., 78, 3196

(1956). (333) C. K. Bradsher and L. J. Wissow, *J. Am. Chem. Soc.*, **68**, 2149 (1946). (334) C. K. Bradsher, L. Rapoport, and P. Anderson, *J. Am. Chem. Soc.*, **68**,

(334) C. N. Bradsher, L. Papoport, and F. Anderson, J. Am. C. M. (1950).
(335) C. K. Bradsher and R. S. Kittila, *J. Org. Chem.*, **15**, 374 (1950).
(336) W. S. Rapson and R. Robinson, *J. Chem. Soc.*, 1285 (1935).
(337) L. H. Hellberg and M. F. Stough, *Acta Chem. Scand.*, **21**, 1368 (1967).
(338) F. Mayer, *Chem. Ber.*, **47**, 406 (1914).

(324) A. Schonberg and F. L. Warren, J. Chem. Soc., 1838 (1939) (325) R. C. Fuson and R. L. Talbott, J. Org. Chem., 26, 2674 (1961).
 (326) C. K. Bradsher and W. J. Jackson, Jr., J. Am. Chem. Soc., 76, 734 (1954).

(309) D. Ginsburg and R. Pappo, J. Chem. Soc., 938 (1951).

(1970)

(1956).

1377 (1960).

77745 (1974).

(321) H. Jaeger, Chem. Ber., 95, 242 (1962).

- H. Erdtman and A. Roulan, Acta Chem. Scand., 23, 249 (1969). (297)
- (298) J. W. Cornforth and R. Robinson, J. Chem. Soc., 684 (1942).
 (299) H. Erdtmann, Justus Liebigs Ann. Chem., 505, 195 (1938).
 (300) S. Goldschmidt and B. Acksteiner, Chem. Ber., 91, 502 (1958).
- (301) S. A. Faseeh and S. H. Zaheer, J. Indian Chem. Soc., 24, 57 (1947).
 (302) (a) R. Criegee, Justus Liebigs Ann. Chem., 481, 263 (1930); (b) P. J. Bunyan

- (339) E. L. Mihelic and M. H. Wilt, U.S. Patent 3 014 049 (1960); Chem. Abstr., 56, 8657 (1962).
- (340) G. Wittig and H. Zimmermann, Chem. Ber., 86, 629 (1953).
- (341) W. Ried and R. Conte, Chem. Ber., 105, 799 (1972).
 (342) S. Kobayashi, K. Kitamura, A. Miura, M. Fukuda, and M. Kihara, Chem. Pharm. Bull., 20, 694 (1972); Chem. Abstr., 77, 101276 (1972).
- (343) R. E. Buntrock and E. C. Taylor, Chem. Rev., 68, 209 (1968).
- (344) R. G. R. Bacon and W. S. Lindsay, J. Chem. Soc., 1375 (1958)
- (345) R. G. R. Bacon and W. S. Lindsay, J. Chem. Soc., 1919 (1958).
 (346) B. J. Auret, R. G. R. Bacon, R. Bankhead, D. C. H. Bigg, and J. S. Ramsey, J. Chem. Soc., Perkin Trans. 1, 2153 and 2156 (1974).
- (347) D. M. Hall, J. E. Ladbury, M. S. Lesslie, and E. E. Turner, J. Chem. Soc., 3475 (1956).
- (348) T. R. Govindachari, M. V. Lakshmikantham, B. R. Pai, and S. R. Rajappa, *Tetrahedron*, **9**, 53 (1960). (349) W. E. Bachmann and E. J. Chu, *J. Am. Chem. Soc.*, **57**, 1095 (1935).
- (350) W. E. Bachmann, J. Am. Chem. Chem. Soc., 54, 1669 (1932).
 (351) E. J. Moriconi, F. T. Wallenberger, L. P. Kuhn, and W. F. O'Connor, J. Org. Chem., 22, 1651 (1957).
- (352) R. C. Fuson and C. Hornberger, J. Org. Chem., 16, 637 (1951).
 (353) (a) R. C. Fuson and R. O. Kerr, J. Org. Chem., 19, 373 (1954); (b) R. C uson, B. Vittimberga, and D. E. Frankhouser, J. Org. Chem., 26, 582 (1961).
- (354) M. S. Newman and S. Blum, J. Am. Chem. Soc., 86, 5598 (1964).

- (355) P. F. Casals, *Bull. Soc. Chim. Fr.*, 264 (1963).
 (356) D. M. Hall, M. S. Lesslie, and E. E. Turner, *J. Chem. Soc.*, 711 (1950).
 (357) E. D. Bergmann and Z. Pelchowicz, *J. Am. Chem. Soc.*, 75, 2663 (1953). (358) G. H. Beaven, D. M. Hall, M. S. Lesslie, E. E. Turner, and G. R. Bird, J. Chem. Soc., 131 (1954).
- (359) M. S. Newman and P. Zeelen, Ohio J. Sci., 65, 187 (1965); Chem. Abstr., 63, 11454 (1965). (360) H. J. Bestmann, H. Haeberlein, and W. Eisele, *Chem. Ber.*, 99, 28 (1966).
- (361) H. J. Bestmann, R. Armsen, and H. Wagner, Chem. Ber., 102, 2259 (1969). (a) H. J. Bestmann, H. Haeberlein, and O. Kratzer, Angew. Chem., Int. Ed. (362) Engl., **3**, 226 (1964); (b) H. J. Bestmann, H. Haeberlein, H. Wagner, and O. Kratzer, *Chem. Ber.*, **99**, 2848 (1966).
- (363) L. A. Carpino, *Chem. Ind.* (London, 172 (1957).
 (364) H. W. Bersch, K. H. Fischer, and A. v. Mietzko, *Arch. Pharm.*, **290**, 353
- (1957)
- (365) K. Mislow and H. Joshua, J. Am. Chem. Soc., 87, 666 (1965).
- (366) A. J. Weinheimer, S. W. Kantor, and C. R. Hauser, J. Org. Chem., 18, 801 (1953).
- (367)R. L. Huang and H. H. Lee, J. Chem. Soc., 2500 (1964).
- (368) R. Quelet and E. Matarasso-Tchiroukhine, C. R. Acad. Sci., Ser. C, 244, 467 (1957).
- (369) G. M. Badger, P. Cheuyehit, and W. H. F. Sasse, J. Chem. Soc., 3241 (1962).(370) L. A. Paquette, J. Am. Chem. Soc., 86, 4085 (1964).
- (371) S. W. Horgan, D. D. Morgan, and M. Orchin, J. Org. Chem., 38, 3801 (1973)
- (372) A. Padwa and A. Mazzu, Tetrahedron Lett., 4471 (1974).
- (373) P. H. G. Ophet Veld, J. C. Langendam, and W. H. Laarhoven, Tetrahedron Lett., 231 (1975). (374) N. C. Yang, L. C. Lin, A. Shani, and S. S. Yang, *J. Org. Chem.*, **34**, 1845
- (1969)
- (375) (a) E. L. Mihelic, U.S. Patent 2 930 742 (1960); Chem. Abstr., 54, 18461 (a) L. M. M. S. M. S. Marthorne, E. L. Mihelic, M. S. Morgan, and M. H. Wilt, J. Org. Chem., 28, 2831 (1963); (c) B. T. Kalakutskii, N. D. Rus'yanova, and L. A. Aristova, U.S.S.R. Patent 216,692 (1968); Chem. Abstr., 69,
- and L. A. Arterova, Status, 96346 (1968).
 (376) E. Mueller, R. Thomas, M. Sauerbier, E. Langer, and D. Streichfuss, *Tetrahedron Lett.*, 521 (1971).
 (377) A. S. Onishchenko, "Diene Synthesis", Israel Program for Scientific 1964. Translations, Jerusalem, Monson, 1964.

- (378) H. L. Holmes, Org. React., 4, 60 (1948).
 (379) M. C. Kloetzel, Org. React., 4, 1 (1948).
 (380) R. A. Baxter, W. L. Norris, and D. S. Morris, J. Chem. Soc., 95 (1949).
 (381) W. E. Bachmann and N. C. Deno, J. Am. Chem. Soc., 71, 3062 (1949).
 (382) W. E. Bachmann and L. B. Scott, J. Am. Chem. Soc., 50, 1442 (1948).
 (383) E. Bergmann and F. Bergmann, J. Am. Chem. Soc., 59, 1443 (1937).

- (384) F. Bergmann and A. Weizmann, J. Org. Chem., 11, 592 (1946).
 (385) W. Davies and Q. N. Porter, J. Chem. Soc., 459 (1957).
 (386) A. Cohen and F. L. Warren, J. Chem. Soc., 1315 (1937).
- (387) J. L. R. Williams, D. G. Borden, and T. M. Laasko, J. Org. Chem., 21, 1461 (1956).
- (388) R. E. Heckert and N. E. Searle, U.S. Patent 2 781 393; Chem. Abstr., 51, 148186 (1957)
- (389) L. H. Klemm, W. C. Solomon, and A. J. Kohlik, J. Org. Chem., 27, 2777 (1962).
- (390) S. Breitner, Med. Chem. Abhandl. Med-Chem., 4, 317 (1942); Chem. Abstr., 38, 4953 (1944).

(391) J. Heer and K. Miescher, *Helv. Chim. Acta*, **31**, 219, 229, 1289 (1948).
 (392) W. E. Bachmann and J. M. Chemerda, *J. Am. Chem. Soc.*, **70**, 1468 (1948).

A. J. Floyd, S. F. Dyke, and S. E. Ward

- (393) H. Gottschalk and H. G. Schulz, German Offen. 2 034 744; Chem. Abstr.,
- 78, 72316 (1972). (394) Z. G. Hajos, D. R. Parrish, and M. W. Goldberg, *J. Org. Chem.*, **30**, 1213 (1965).
- (395) I. V. Torgov, T. I. Sorkina, and I. I. Zaretskaya, Bull. Soc. Chim. Fr., 2063 (1964)
- (396) E. Dane, O. Höss, K. Eder, J. Schmitt, and O. Schön, Justus Liebigs Ann. Chem., 536, 183 (1938).
- (397) E. Dane, O. Höss, A. W. Bindseil, and J. Schmitt, Justus Liebigs Ann. Chem., 532, 39 (1937).
- (398) A. D. Campbell and M. R. Grimmett, Aust. J. Chem., 16, 854 (1963).
- (399) W. Sandermann and R. Casten, Tetrahedron Lett., 1267 (1963).
- (400) J. G. Whitney and K. T. Lee, J. Org. Chem., 38, 2033 (1973).
 (401) M. P. Cava, R. L. Shirley, and B. W. Erickson, J. Org. Chem., 27, 755
- (1962)
- (402) N. C. Deno and H. Chafetz, J. Org. Chem., 25, 449 (1960).
- (403) N. Deno, J. Am. Chem. Soc., 72, 4057 (1950).
 (404) L. F. Fieser and A. M. Seligman, J. Am. Chem. Soc., 56, 2690 (1934).
 (405) M. F. Ansell and R. A. Murray, Chem. Commun., 1111 (1969); J. Chem.
- Soc. C, 1429 (1971).
- (406) E. D. Bergmann, R. Pappo, and D. Ginsburg, J. Chem. Soc., 1369 (1950).
 (407) American Cyanamid Co., Netherlands Patent 6 603 419; Chem. Abstr., 66, 28582 (1967).
- (408) H. A. Farber, U.S. Patent 3 284 470; *Chem. Abstr.*, 66, 28450 (1967).
 (409) R. W. Hoffman, "Dehydrobenzene and Cycloalkynes", Academic Press,
- London, 1967. (410) S. F. Dyke, A. R. Marshall, and J. P. Watson, Tetrahedron Lett., 3583
- (1964). (411) S. F. Dvke, A. R. Marshall, and J. P. Watson, Tetrahedron, 22, 2515 (1966).
- (412) S. F. Dyke and A. C. Ellis, unpublished.
- (413) E. Wolthuis and W. Cady, Angew. Chem., Int. Ed. Engl., 6, 555 (1967).

- (415) E. Woltrals and W. Cady, Angew. Chem., Int. Ed. Eng., 6, 555 (1957).
 (416) H. E. Simmons, J. Am. Chem. Soc., 83, 1657 (1961).
 (415) W. L. Dilling, Tetrahedron Lett., 939 (1966).
 (416) E. Ciganek, J. Org. Chem., 34, 1923 (1969).
 (417) R. Harrison, H. Heaney, J. M. Jablonski, K. G. Mason, and J. M. Sketchley, J. Chem. Soc. C, 1684 (1968).
 (418) S. C. Cohen, M. L. N. Reddy, D. M. Roc, A. J. Tomlinson, and A. G. Massey,
- (418) S. C. Cohen, M. L. N. HOUG, D. M. HOC, A. J. Hollinisoli, and A. G. Wassey, J. Organometal. Chem., **14**, 241 (1968).
 (419) N. N. Povolotskaya, T. I. Limasova, I. N. Vorozhtsov, and V. A. Barkhash, Zh. Obshch. Khim., **38**, 1651 (1968); Chem. Abstr., **69**, 106319 (1968).
 (420) N. N. Povolotskaya and V. A. Barkhash, *Izv. Akad. Nauk SSSR, Ser. Khim.*,
- 1387 (1968); Chem. Abstr., 69, 86688 (1968).
- (421) D. D. Callander, P. L. Coe, J. C. Tatlow, and A. J. Uff, Tetrahedron, 25, 25 (1969)
- (422) L. Friedman and F. M. Logulla, J. Am. Chem. Soc., 85, 1549 (1963).
- (422) L. Friedman and F. M. Lögulla, J. Am. Chem., Soc., 55, 1549 (1963).
 (423) L. Friedman and F. M. Lögulla, J. Org. Chem., 34, 3089 (1969).
 (424) S. F. Dyke, A. J. Floyd, and S. E. Ward, *Tetrahedron*, 26, 4005 (1970).
 (425) M. Stiles, U. Burckhardt, and A. Haag, J. Org. Chem., 27, 4715 (1962).
 (426) S. E. Ward, Ph.D. Thesis, University of Bath, Avon, U.K., 1971.

- (427) M. Sato and Y. Ishida, Kagaku Zasshi., 91 (2), 173 (1970); Chem. Abstr., 73, 25624 (1970). (428) J. Ficini and A. Krief, *Tetrahedron Lett.*, 4143 (1968).

- (429) G. Wittig and E. Benz, *Chem. Ber.*, **92**, 1990 (1959).
 (430) W. Tochtermann, G. D. Stubenrauch, C. Rohr, U. Schumacher, K. G. Reiff, and H. D. Trautwein, German Offen, 2 224 561; Chem. Abstr., 80, 70603 (1974).
- (431) W. Tochtermann, G. Stubenrauch, K. Reiff, and U. Schumacher, Chem.
- (432) I. N. Nazarov, I. V. Torgov, and M. V. Kuvarzina, *Zh. Obshch. Khim.*, 22, 220 (1952); *Chem. Abstr.*, 46, 11122 (1952).
 (433) H. Christol, D. Moers, and Y. Pietrasanta, *Bull. Soc. Chim. Fr.*, 962 (1969).
- (434) H. Christol and Y. Pietrasanta, *Tetrahedron Lett.*, 6471 (1966).
 (435) R. Y. Levina, Y. S. Shabarov, and L. A. Chervoneva, *Zh. Obshch. Khim.*,
- 26, 2852 (1956); Chem. Abstr., 51, 8112 (1957).
- (436) N. Maoz and S. Uvomen, Recl. Trav. Chim. Pays-Bas, 84, 1094 (1965).
- (437) N. L. Drake and C. M. Kraebel, *J. Org. Chem.*, 26, 41 (1961).
 (438) S. C. Sengupta, A. Bhattacharyya, S. Datta, and A. Mitra, *J. Indian Chem.*
- (438) S. C. Sengupta, A. Brattacharyya, S. Datta, and A. Mitra, J. Indian Chem. Soc., 37, 597 (1960).
 (439) V. R. Skvarchenko, T. S. Sukhareva, and R. Ya. Levina, *Zh. Obshch. Khim.*, 34, 752 (1964); *Chem. Abstr.*, 60, 15750 (1964).
 (440) V. R. Skvarchenko, D. Ts. Tsybikova, and R. Ya. Levina, *Zh. Obshch.* (440) V. R. Skvarchenko, D. Ts. Tsybikova, and R. Ya. Levina, *Zh. Obshch.*
- Khim., 32, 108 (1962); Chem. Abstr., 57, 12392 (1962).
 (441) H. Christol and M. Levy, Bull. Soc. Chim. Fr., 3043 (1964).
 (442) H. Christol, M. Levy, and Y. Pietrasanta, C. R. Acad. Sci., Ser. C., 258,
- 1844 (1964).
- (443) J. Strumza and D. Ginsburg, J. Chem. Soc., 1514 (1961).
 (444) D. W. H. MacDowell and R. L. Childers, J. Org. Chem., 27, 2630 (1962).
- (445) P. Courtot and J. C. Clement, Bull. Soc. Chim. Fr., 2121 (1973).
- (446). D. L. Fields, J. Org. Chem., 36, 3002 (1971).